A crystalline molecular gyrotop with germanium junctions between a phenylene rotor and alkyl spokes

Yusuke Inagaki, ${ }^{a}$ Kentaro Yamaguchi, b and Wataru Setaka,,,a

${ }^{\text {a }}$ Division of Applied Chemistry, Faculty of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan
${ }^{\mathrm{b}}$ Faculty of Pharmaceutical Sciences at Kagawa Campus, Tokushima Bunri University, 1314-1
Shido, Sanuki, Kagawa 769-2193, Japan

1. Copies of NMR Spectra for All New Compounds

Fig S1. ${ }^{1} \mathrm{H}$ NMR spectrum of Ethoxytris(7-octenyl)germane (3) in CDCl_{3}. S2
Fig S2. ${ }^{13} \mathrm{C}$ NMR spectrum of Ethoxytris(7-octenyl)germane (3) in CDCl_{3}. S2
Fig S3. ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ hsqc NMR spectrum of Ethoxytris(7-octenyl)germane (3) in CDCl_{3}. $\mathbf{S 3}$
Fig S4. ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ hmbc NMR spectrum of Ethoxytris(7-octenyl)germane (3) in CDCl_{3}. $\mathbf{S 3}$
Fig S5. ${ }^{1} \mathrm{H}$ NMR spectrum of Chlorotris(7-octenyl)germane (4) in CDCl_{3}. S4
Fig S6. ${ }^{13} \mathrm{C}$ NMR spectrum of Chlorotris(7-octenyl)germane (4) in CDCl_{3}. S4
Fig S7. ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ hsqc NMR spectrum of Chlorotris(7-octenyl)germane (4) in CDCl_{3}. S5
Fig S8. ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ hmbc NMR spectrum of Chlorotris(7-octenyl)germane (4) in CDCl_{3}. $\mathbf{S 5}$
Fig S9. ${ }^{1} \mathrm{H}$ NMR spectrum of 1,4-bis(tri-7-octenylgermyl)benzene (5) in CDCl_{3}. S6
Fig S10. ${ }^{13} \mathrm{C}$ NMR spectrum of 1,4-bis(tri-7-octenylgermyl)benzene (5) in CDCl_{3}. S6
Fig S11. ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ hsqc NMR spectrum of 1,4-bis(tri-7-octenylgermyl)benzene (5) in CDCl_{3}. $\mathbf{S} 7$
Fig S12. ${ }^{1} \mathrm{H}^{-13} \mathrm{C}$ hmbc NMR spectrum of 1,4-bis(tri-7-octenylgermyl)benzene (5) in CDCl_{3}. S7
Fig S13. ${ }^{1} \mathrm{H}$ NMR spectrum of Molecular Gyrotop (2) in CDCl_{3}. S8
Fig S14. ${ }^{13} \mathrm{C}$ NMR spectrum of Molecular Gyrotop (2) in CDCl_{3}. S8
Fig S15. ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ hsqc NMR spectrum of Molecular Gyrotop (2) in CDCl_{3}. S9
Fig S16. ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ hmbc NMR spectrum of Molecular Gyrotop (2) in CDCl_{3}. S9
Fig S17. ${ }^{1} \mathrm{H}$ NMR spectrum of Molecular Gyrotop Isomer (2i) in CDCl_{3}. S10
Fig S18. ${ }^{13} \mathrm{C}$ NMR spectrum of Molecular Gyrotop Isomer (2i) in CDCl_{3}. S10
Fig S19. ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ hsqc NMR spectrum of Molecular Gyrotop Isomer (2i) in CDCl_{3}. S11
Fig S20. ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ hmbc NMR spectrum of Molecular Gyrotop Isomer (2i) in CDCl_{3}. S11
2. ORTEP Drawing of Moleculr Gyrotop 2

Fig S21. Molecular structure of $\mathbf{2}$ determined by X-ray crystallography
3. Details of Solid-state ${ }^{\mathbf{2}} \mathbf{H}$ NMR Study of 2- $\boldsymbol{d}_{\mathbf{4}}$

Fig S22. Temperature dependence of solid-state ${ }^{2} \mathrm{H}$ NMR spectra of 2- d_{2}..... S14
Fig S23. Representative inversion-recovery ${ }^{2} \mathrm{H}$ NMR spectra of molecular gyrotop 2- d_{4}. S15
4. Details of Optical properties of a single crystal of 2

Fig S24. Crystal orientation mapping of a single crystal of 2 S16
Fig S25. Crystal thickness of single crystals of 2 S16
Fig S26abc. Photographs of a single crystal of $\mathbf{2}$ observed by polarized microscopy S17
Fig S27. Small and fast optical axes of the single crystal of 2 S22

1. Copies of NMR Spectra for All New Compounds

a. Spectra of Ethoxytris(7-octenyl)germane (3)

Fig S1. ${ }^{1} \mathrm{H}$ NMR spectrum of Ethoxytris(7-octenyl)germane (3) in CDCl_{3}.

Fig S2. ${ }^{13} \mathrm{C}$ NMR spectrum of Ethoxytris(7-octenyl)germane (3) in CDCl_{3}.

Fig S3. ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ hsqc NMR spectrum of Ethoxytris(7-octenyl)germane (3) in CDCl_{3}.

Fig S4. ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ hmbc NMR spectrum of Ethoxytris(7-octenyl)germane (3) in CDCl_{3}.

b. Spectra of Chlorotris(7-octenyl)germane (4)

Fig S5. ${ }^{1} \mathrm{H}$ NMR spectrum of Chlorotris(7-octenyl)germane (4) in CDCl_{3}.

Fig S6. ${ }^{13} \mathrm{C}$ NMR spectrum of Chlorotris(7-octenyl)germane (4) in CDCl_{3}.
$1 \mathrm{H}-13 \mathrm{C}$ HSQC, (C8) 3 GeCl

Fig S7. ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ hsqc NMR spectrum of Chlorotris(7-octenyl)germane (4) in CDCl_{3}.

Fig S8. ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ hmbc NMR spectrum of Chlorotris(7-octenyl)germane (4) in CDCl_{3}.
c. Spectra of 1,4-bis(tri-7-octenylgermyl)benzene (5)

Fig S9. ${ }^{1} \mathrm{H}$ NMR spectrum of 1,4-bis(tri-7-octenylgermyl)benzene (5) in CDCl_{3}.

Fig S10. ${ }^{13} \mathrm{C}$ NMR spectrum of 1,4-bis(tri-7-octenylgermyl)benzene (5) in CDCl_{3}.

Fig S11. ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ hmbc NMR spectrum of 1,4-bis(tri-7-octenylgermyl)benzene (5) in CDCl_{3}.

Fig S12. ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ hsqc NMR spectrum of 1,4-bis(tri-7-octenylgermyl)benzene (5) in CDCl_{3}.

d. Spectra of Molecular Gyrotop (2)

Fig S14. ${ }^{13} \mathrm{C}$ NMR spectrum of Molecular Gyrotop (2) in CDCl_{3}.

Fig S15. ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ hsqc NMR spectrum of Molecular Gyrotop (2) in CDCl_{3}.

Fig S16. ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ hmbc NMR spectrum of Molecular Gyrotop (2) in CDCl_{3}.
e. Spectra of Molecular Gyrotop Isomer (2i)

Fig S18. ${ }^{13} \mathrm{C}$ NMR spectrum of Molecular Gyrotop Isomer (2i) in CDCl_{3}.

Fig S19. ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ hsqc NMR spectrum of Molecular Gyrotop Isomer (2i) in CDCl_{3}.

Fig S20. ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ hmbc NMR spectrum of Molecular Gyrotop Isomer (2i) in CDCl_{3}.

2. ORTEP Drawing of Moleculr Gyrotop 2

The structures were refined using a SHELXL program package. Because of remarkably weak diffraction data at high temperature, it was difficult to refine the structure of the crystal adequately. Certain C-C distances and C-C-C angles of the alkyl chains were restrained by means of DFIX and DANG, respectively, because of the unresolved disorder.
(a)

(b)

(c)

Fig S21. ORTEP drawing of the molecular structure of $\mathbf{2}$ at (a) 260 K ; (b) 300 K ; and (c) 340 K (30% thermal probability ellipsoid). Hydrogen atoms are omitted for clarity. Disorders of side chains are indicated.

Table S1. Crystal Data of $\mathbf{2}$ at $260 \mathrm{~K}, 300 \mathrm{~K}$, and 340 K

		260 K	300 K	340 K
CCDC \#		1026017	1026018	1026019
Empirical formula		$\mathrm{C}_{48} \mathrm{H}_{88} \mathrm{Ge}_{2}$	$\mathrm{C}_{48} \mathrm{H}_{88} \mathrm{Ge}_{2}$	$\mathrm{C}_{48} \mathrm{H}_{88} \mathrm{Ge}_{2}$
Cryst shape		prism	plate	prism
Cryst color		colorless	colorless	colorless
Cryst size		$0.40 \times 0.20 \times 0.20 \mathrm{~mm}^{3}$	$0.40 \times 0.20 \times 0.20 \mathrm{~mm}^{3}$	$0.40 \times 0.20 \times 0.20 \mathrm{~mm}^{3}$
Formula weight / $\mathrm{g} \mathrm{mol}^{-1}$		810.36	810.36	810.36
Crystal system		Monoclinic	Monoclinic	Monoclinic
Space group		C2/c	Cc	Cc
Z		4	4	4
Temperature / K		260(2)	300(2)	340(2)
Cell parameter	a	25.736(7) \AA	26.056(10) \AA	$26.170(17) \AA$
	b	11.733 (3) Å	11.558(4) \AA	11.561(8) \AA
	c	18.790(5) \AA	19.190(7) \AA	$19.398(13) \AA$
	α	90.00°	90.00°	90.00°
	β	$120.046(3)^{\circ}$	$118.979(4)^{\circ}$	$118.837(7)^{\circ}$
	γ	90.00°	90.00°	90.00°
	V	4911(2) \AA^{3}	5056(3) \AA^{3}	5141(6) \AA^{3}
Calculated density		$1.096 \mathrm{Mg} / \mathrm{m}^{3}$	$1.065 \mathrm{Mg} / \mathrm{m}^{3}$	$1.047 \mathrm{Mg} / \mathrm{m}^{3}$
F(000)		1760	1760	1760
Absorption coefficient		$1.252 \mathrm{~mm}^{-1}$	$1.216 \mathrm{~mm}^{-1}$	$1.196 \mathrm{~mm}^{-1}$
θ range for collecn (deg)		1.83 to 27.10°	2.43 to 16.30°	2.40 to 15.39°
Index ranges		$\begin{gathered} -24<=\mathrm{h}<=31,-8<=\mathrm{k}<=14,- \\ 23<=1<=23 \end{gathered}$	$\begin{gathered} -24<=\mathrm{h}<=30,-13<=\mathrm{k}<=11, \\ -22<=1<=22 \end{gathered}$	$\begin{gathered} -25<=\mathrm{h}<=32,-14<=\mathrm{k}<=11, \\ -23<=1<=24 \end{gathered}$
Reflections collected		11694	10770	11576
Independent reflections		$4954[\mathrm{R}(\mathrm{int})=0.0299]$	$6828[\mathrm{R}(\mathrm{int})=0.0429]$	7471 [$\mathrm{R}(\mathrm{int})=0.0445]$
Completeness		99.6 \%	99.4 \%	99.5 \%
Goodness-of-fit on $\mathbf{F}^{\mathbf{2}}$		1.015	0.895	0.859
Final R indices [I>2sigma(I)]		$\begin{gathered} \mathrm{R} 1=0.0640, \mathrm{wR} 2= \\ 0.1884 \end{gathered}$	$\begin{gathered} \mathrm{R} 1=0.0712, \mathrm{wR} 2= \\ 0.1778 \end{gathered}$	$\begin{gathered} \mathrm{R} 1=0.0585, \mathrm{wR} 2= \\ 0.1405 \end{gathered}$
R indices (all data)		$\begin{gathered} \mathrm{R} 1=0.1390, \mathrm{wR} 2= \\ 0.2352 \end{gathered}$	$\begin{gathered} \mathrm{R} 1=0.1889, \mathrm{wR} 2= \\ 0.2648 \end{gathered}$	$\begin{gathered} \mathrm{R} 1=0.2226, \mathrm{wR} 2= \\ 0.2312 \end{gathered}$
Largest diff. peak and hole		0.439 and -0.311 e. \AA^{-3}	0.358 and -0.176 e. \AA^{-3}	0.177 and -0.094 e. \AA^{-3}

3. Details of Solid-state ${ }^{\mathbf{2}} \mathbf{H}$ NMR Study of $\mathbf{2 - d} \boldsymbol{d}_{4}$

The temperature-dependent, solid-state ${ }^{2} \mathrm{H}$ NMR spectra of 2- \boldsymbol{d}_{4} were obtained through the same procedure as reported previously for $\mathbf{1 - \boldsymbol { d } _ { 4 }} .^{4 e}$ The details are as follows: the data were recorded using a quadrupolar echo pulse sequence ($\mathrm{d} 1-90^{\circ}$ pulse- $\tau 1-90^{\circ}$ pulse- $\tau 2-\mathrm{FID} ; 90^{\circ}$ pulse $=4.2 \mu \mathrm{~s}, \tau 1=30 \mu \mathrm{~s}, \tau 2=20 \mu \mathrm{~s}$, $\mathrm{d} 1=20$ s). Simulations of the ${ }^{2} \mathrm{H}$ NMR spectra were carried out using NMR-WEBLAB. The following parameters were used for the simulations: quadrupolar coupling constant $q \mathrm{cc}=122 \mathrm{kHz}$, asymmetry parameter $\eta=0$, line broadening $=3 \mathrm{kHz}$.

The temperature dependence of the spin-lattice relaxation time $\left(T_{1}\right)$ in the ${ }^{2} \mathrm{H}$ NMR spectra was recorded using an inversion-recovery quadrupolar echo pulse sequence ($\mathrm{d} 1-180^{\circ}$ pulse- $\mathrm{d} 2-90^{\circ}$ pulse- $\tau 1-90^{\circ}$ pulse$\tau 2$-FID; 90° pulse $=4.2 \mu \mathrm{~s}, \tau 1=30 \mu \mathrm{~s}, \tau 2=20 \mu \mathrm{~s}, \mathrm{~d} 1=5-3 \mathrm{~s}, \mathrm{~d} 2$ varied) and standard T_{1} analysis software. The spin-lattice relaxation time (T_{1}) was analyzed using the general relaxation model (eq. 1). T_{1} is known to depend on the motional model for the exchange process; several special motions have been discussed so far.

a. VT-Solid state ${ }^{\mathbf{2}} \mathbf{H}$ NMR spectra of 2- d_{4}.

Fig S22. Temperature dependence of solid-state ${ }^{2} \mathrm{H}$ NMR spectra of $\mathbf{2}-d_{2}$ [solid black line: observed spectra; dotted red line: spectra simulated with designated exchange rate constants, k, and degree of angular displacement, Δ. The simulation model is mentioned in main text].
b. Analysis of temperature dependence of the ${ }^{2} \mathrm{H}$ NMR spin-lattice relaxation $\left(T_{I}\right)$ measurements of $2-d_{2}$

280 K

260 K
$d_{2} / \sec 0.001{ }_{0.002}{ }^{0.005}{ }_{0.01}{ }^{0.02} 0.04{ }^{0.08} 0.16$ Nomennen

300 K
$d_{2} / \sec 0.001{ }_{0.002}{ }^{0.005} 0.01{ }^{0.02} 0.04{ }^{0.08} 0.16$

340 K
$d_{2} / \sec 0.001{ }_{0.002}{ }^{0.005}{ }_{0.01}{ }^{0.02} 0.04{ }^{0.08} 0.16$

Fig S23. Representative inversion-recovery ${ }^{2} \mathrm{H}$ NMR spectroscopy data and single exponential fit from solid sample of molecular gyrotop 2- $d_{4}(240 \mathrm{~K}-340 \mathrm{~K})$.

4. Details of Optical properties of a single crystal of 2

The fast and slow optical axes were confirmed by a polarized-light microscope equipped with a sensitive color plate. Retardations were observed by the polarized-light microscope equipped with a Berek compensator and monochromatic light at 546 nm generated by a color filter. The thickness of the crystal was measured by a laser displacement sensor at 300 K . The Δn value was calculated from the retardation/thickness of the sample.

a. Crystal orientation mapping of a single crystal of 2

Fig S24. Crystal orientation mapping of a single crystal of $\mathbf{2}$ as determined by X-ray diffraction study at 300 K .

b. Thickness of the single crystal of 2

The thickness of the crystal was measured at 300 K using a laser displacement sensor (KEYENCE LT-9010M).

Fig S25. Measurement of the thickness of the single crystal of 2 at 300 K using a laser displacement sensor (KEYENCE LT-9010M); (a) $63.7 \pm 1.0 \mu \mathrm{~m}$;(b) $56.8 \pm 1.0 \mu \mathrm{~m}$; (c) $44.9 \pm$ $1.0 \mu \mathrm{~m}$.

c. Photograph of single crystals of 2 observed by polarized microscopy

Fig S26a. Photographs of the single crystal of 2 (sample thickness: 64 ± 1 $\mu \mathrm{m})$ showing the crystal face upon irradiation with polarized white light ($\{100\}$ face at 200 K).

Fig S26b. Photographs of the single crystal of 2 (sample thickness: 57 ± 1 $\mu \mathrm{m})$ showing the crystal face upon irradiation with polarized white light ($\{100\}$ face at 200 K).

Fig S26c. Photographs of the single crystal of 2 (sample thickness: 45 ± 1 $\mu \mathrm{m})$ showing the crystal face upon irradiation with polarized white light ($\{100\}$ face at 200 K).

d. Temperature dependence of $\Delta \boldsymbol{n}$ of 2

Temperature dependence of birefringence (Δn) of the crystal face of a single crystal of $\mathbf{2}$, calculated from Retardation/Thickness as summarized in Table S2.

Table S2-1. Temperature Dependence of Retardation, and Δn of $\mathbf{2}$.
(Thickness of the Single Crystal $d=44.9 \mu \mathrm{~m}$)

Temperature $/ \mathrm{K}$	Retardation ${ }^{1)} / \mathrm{nm}$ cooling process \mid heating process	$\Delta n^{2)} / 10^{-3}$ 210
220	$855.7 \mid 859.7$	$19.08 \pm 0.60 \mid 19.16 \pm 0.53$
230	$871.5 \mid 864.1$	$19.43 \pm 0.47 \mid 19.26 \pm 0.57$
240	$880.3 \mid 876.4$	$19.63 \pm 0.50 \mid 19.54 \pm 0.47$
250	$897.8 \mid 885.4$	$20.02 \pm 0.53 \mid 19.74 \pm 0.54$
260	$546.2 \mid 892.5$	$12.18 \pm 0.29 \mid 19.90 \pm 0.55$
270	$544.5 \mid 872.3$	$12.14 \pm 0.33 \mid 19.45 \pm 0.49$
280	$536.4 \mid 540.7$	$11.96 \pm 0.29 \mid 12.01 \pm 0.33$
290	$526.5 \mid 528.0$	$11.74 \pm 0.31 \mid 11.79 \pm 0.28$
300	$497.2 \mid 499.2$	$11.08 \pm 0.28 \mid 11.13 \pm 0.28$
310	$473.6 \mid 472.5$	$10.56 \pm 0.28 \mid 10.53 \pm 0.28$
320	$451.9 \mid 451.4$	$10.07 \pm 0.28 \mid 10.07 \pm 0.25$
330	$432.1 \mid 435.5$	$9.63 \pm 0.27 \mid 9.72 \pm 0.23$
340	$417.7 \mid 418.1$	$9.31 \pm 0.24 \mid 9.32 \pm 0.23$
350	$405.1 \mid 400.5$	$9.03 \pm 0.32 \mid 8.93 \pm 0.28$
360	$385.3 \mid 387.6$	$8.59 \pm 0.29 \mid 8.64 \pm 0.26$
370	$371.6 \mid 369.9$	$8.28 \pm 0.26 \mid 8.25 \pm 0.23$
$357.2 \mid 357.3$	$7.96 \pm 0.23 \mid 7.97 \pm 0.24$	

1) Mean values of three time measurements.
2) The error for the birefringence Δn includes both a measurement error of retardation and a thickness error (± 1.0).
(Thickness of the Single Crystal $d=56.8 \mu \mathrm{~m}$)

Temperature $/ \mathrm{K}$	Retardation ${ }^{1)} / \mathrm{nm}$ cooling process \mid heating process	$\left.$$\Delta n^{2)} / 10^{-3}$ 210$\quad 1105.6 \right\rvert\, 1107.3$
220	$1112.5 \mid 1117.0$	$19.47 \pm 0.43 \mid 19.50 \pm 0.49$
230	$1129.6 \mid 1138.9$	$19.59 \pm 0.47 \mid 19.67 \pm 0.37$
240	$1151.3 \mid 1155.9$	$19.89 \pm 0.49 \mid 20.06 \pm 0.38$
250	$693.8 \mid 1162.0$	$20.28 \pm 0.42 \mid 20.36 \pm 0.42$
260	$683.4 \mid 1129.2$	$12.22 \pm 0.25 \mid 20.47 \pm 0.45$
270	$673.9 \mid 1056.0$	$12.04 \pm 0.24 \mid 19.89 \pm 0.39$
280	$663.1 \mid 666.0$	$11.87 \pm 0.23 \mid 18.60 \pm 0.48$
290	$631.7 \mid 628.3$	$11.68 \pm 0.26 \mid 11.73 \pm 0.32$
300	$601.1 \mid 599.4$	$11.13 \pm 0.25 \mid 11.13 \pm 0.25$
310	$570.2 \mid 571.0$	$10.60 \pm 0.20 \mid 10.60 \pm 0.20$
320	$548.1 \mid 548.6$	$10.04 \pm 0.20 \mid 10.04 \pm 0.20$
330	$524.7 \mid 526.5$	$9.65 \pm 0.22 \mid 9.65 \pm 0.22$
340	$508.4 \mid 506.5$	$9.24 \pm 0.20 \mid 9.24 \pm 0.20$
350	$489.5 \mid 489.1$	$8.95 \pm 0.22 \mid 8.95 \pm 0.22$
360	$470.2 \mid 470.2$	$8.62 \pm 0.16 \mid 8.62 \pm 0.16$
370	$452.1 \mid 449.5$	$8.28 \pm 0.17 \mid 8.28 \pm 0.17$

1) Mean values of three time measurements.
2) The error for the birefringence Δn includes both a measurement error of retardation and a thickness error (± 1.0).

e. Details of measurement of the optical axes of the single crystal of 2

On the $\{100\}$-face of the crystal at 300 K , the fast optical axis is observed to be parallel to $<010>$ axis as ascertained from the decrease in the retardation by 147 nm , observed using a polarized-light microscope equipped with a $1 / 4 \lambda$ plate, which adds 147 nm along the $<010>$ axis (FigS27(i)b). After rotation of the crystal by 90°, the retardation observed through the $1 / 4 \lambda$ plate increased by 147 nm (Fig S27(i)c), indicating that the slow optical axis is perpendicular to $<010>$ axis. On the other hand, in the case at 240 K the increment and decrement of the retardation observed through the $1 / 4 \lambda$ plate were opposite to that observed at 300 K (Fig S27(ii)).

Fig S27. Photographs of the single crystals of 2 (sample thickness: $63.7 \pm 1.0 \mu \mathrm{~m}$) on the crystal face upon irradiation with polarized white light and its retardation $(R)(\{100\}$ face at 300 K). a, Normal photograph with directions of optical axes. b, Photograph through a $1 / 4 \lambda$ plate. c, Photograph through a $1 / 4 \lambda$ plate after 90° rotation of the crystal. d, Photograph through a sensitive color plate. e, Photograph through a sensitive color plate after 90° rotation of the crystal.

