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1.  Copies of NMR Spectra for All New Compounds
a. Spectra of Ethoxytris(7-octenyl)germane (3)

Fig S1. 1H NMR spectrum of Ethoxytris(7-octenyl)germane (3) in CDCl3.

Fig S2. 13C NMR spectrum of Ethoxytris(7-octenyl)germane (3) in CDCl3.
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Fig S3. 1H-13C hsqc NMR spectrum of Ethoxytris(7-octenyl)germane (3) in CDCl3.

Fig S4. 1H-13C hmbc NMR spectrum of Ethoxytris(7-octenyl)germane (3) in CDCl3.
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b. Spectra of Chlorotris(7-octenyl)germane (4)

Fig S5. 1H NMR spectrum of Chlorotris(7-octenyl)germane (4) in CDCl3.

Fig S6. 13C NMR spectrum of Chlorotris(7-octenyl)germane (4) in CDCl3.
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 Fig S7. 1H-13C hsqc NMR spectrum of Chlorotris(7-octenyl)germane (4) in CDCl3.

 Fig S8. 1H-13C hmbc NMR spectrum of Chlorotris(7-octenyl)germane (4) in CDCl3.
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c. Spectra of 1,4-bis(tri-7-octenylgermyl)benzene (5)

 
Fig S9. 1H NMR spectrum of 1,4-bis(tri-7-octenylgermyl)benzene (5) in CDCl3.

Fig S10. 13C NMR spectrum of 1,4-bis(tri-7-octenylgermyl)benzene (5) in CDCl3.
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 Fig S11. 1H-13C hmbc NMR spectrum of 1,4-bis(tri-7-octenylgermyl)benzene (5) in CDCl3.

 

 

 Fig S12. 1H-13C hsqc NMR spectrum of 1,4-bis(tri-7-octenylgermyl)benzene (5) in CDCl3.
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d. Spectra of Molecular Gyrotop (2)

 

Fig S13. 1H NMR spectrum of Molecular Gyrotop (2) in CDCl3.

Fig S14. 13C NMR spectrum of Molecular Gyrotop (2) in CDCl3.
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 Fig S15. 1H-13C hsqc NMR spectrum of Molecular Gyrotop (2) in CDCl3.

 

 
 Fig S16. 1H-13C hmbc NMR spectrum of Molecular Gyrotop (2) in CDCl3.
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e. Spectra of Molecular Gyrotop Isomer (2i)

 
Fig S17. 1H NMR spectrum of Molecular Gyrotop Isomer (2i) in CDCl3.

Fig S18. 13C NMR spectrum of Molecular Gyrotop Isomer (2i) in CDCl3.
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 Fig S19. 1H-13C hsqc NMR spectrum of Molecular Gyrotop Isomer (2i) in CDCl3.

 

 
 Fig S20. 1H-13C hmbc NMR spectrum of Molecular Gyrotop Isomer (2i) in CDCl3.
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2.  ORTEP Drawing of Moleculr Gyrotop 2

The structures were refined using a SHELXL program package. Because of remarkably　
weak diffraction data at high temperature, it was difficult to refine the structure of the crystal 
adequately. Certain C-C distances and C-C-C angles of the alkyl chains were restrained by 
means of DFIX and DANG, respectively, because of the unresolved disorder.

Fig S21. ORTEP drawing of the molecular structure of 2 at (a) 260 K; (b) 300 K; 
and (c) 340 K (30% thermal probability ellipsoid). Hydrogen atoms are omitted for 
clarity. Disorders of side chains are indicated.
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  Table S1. Crystal Data of 2 at 260 K, 300 K, and 340 K

260 K 300 K 340 K

CCDC # 1026017 1026018 1026019

Empirical formula C48 H88 Ge2 C48 H88 Ge2 C48 H88 Ge2

Cryst shape prism plate prism

Cryst color colorless colorless colorless

Cryst size 0.40 x 0.20 x 0.20 mm3 0.40 x 0.20 x 0.20 mm3 0.40 x 0.20 x 0.20 mm3

Formula weight / g mol-1 810.36 810.36 810.36

Crystal system Monoclinic Monoclinic Monoclinic

Space group C2/c Cc Cc

Z 4 4 4

Temperature / K 260(2) 300(2) 340(2)

a 25.736(7) Å 26.056(10) Å 26.170(17) Å

b 11.733(3) Å 11.558(4) Å 11.561(8) Å

c 18.790(5) Å 19.190(7) Å 19.398(13) Å

 90.00° 90.00° 90.00°

 120.046(3)° 118.979(4)° 118.837(7)°

 90.00° 90.00° 90.00°

Cell parameter

V 4911(2) Å3 5056(3) Å3 5141(6) Å3

Calculated density 1.096 Mg/m3 1.065 Mg/m3 1.047 Mg/m3

F(000) 1760 1760 1760

Absorption coefficient 1.252 mm-1 1.216 mm-1 1.196 mm-1

 range for collecn (deg) 1.83 to 27.10° 2.43 to 16.30° 2.40 to 15.39°

Index ranges -24<=h<=31, -8<=k<=14, -
23<=l<=23

-24<=h<=30, -13<=k<=11, 
-22<=l<=22

-25<=h<=32, -14<=k<=11, 
-23<=l<=24

Reflections collected 11694 10770 11576

Independent reflections 4954 [R(int) = 0.0299] 6828 [R(int) = 0.0429] 7471 [R(int) = 0.0445]

Completeness 99.6 % 99.4 % 99.5 %

Goodness-of-fit on F2 1.015 0.895 0.859

Final R indices 
[I>2sigma(I)]

R1 = 0.0640, wR2 = 
0.1884

R1 = 0.0712, wR2 = 
0.1778

R1 = 0.0585, wR2 = 
0.1405

R indices (all data) R1 = 0.1390, wR2 = 
0.2352

R1 = 0.1889, wR2 = 
0.2648

R1 = 0.2226, wR2 = 
0.2312

Largest diff. peak and hole 0.439 and -0.311 e.Å-3 0.358 and -0.176 e.Å-3 0.177 and -0.094 e.Å-3
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3.  Details of Solid-state 2H NMR Study of 2-d4

The temperature-dependent, solid-state 2H NMR spectra of 2-d4 were obtained through the same procedure 
as reported previously for 1-d4.4e The details are as follows: the data were recorded using a quadrupolar 
echo pulse sequence (d1-90° pulse-1-90° pulse-2-FID; 90° pulse = 4.2 μs, 1 = 30 μs, 2 = 20 μs, d1 = 20 
s). Simulations of the 2H NMR spectra were carried out using NMR-WEBLAB. The following parameters 
were used for the simulations: quadrupolar coupling constant qcc = 122 kHz, asymmetry parameter η = 0, 
line broadening = 3 kHz. 

The temperature dependence of the spin-lattice relaxation time (T1) in the 2H NMR spectra was recorded 
using an inversion-recovery quadrupolar echo pulse sequence (d1-180° pulse-d2-90° pulse-1-90° pulse-
2-FID; 90° pulse = 4.2 μs, 1 = 30 μs, 2 = 20 μs, d1 = 5–3 s, d2 varied) and standard T1 analysis software. 
The spin-lattice relaxation time (T1) was analyzed using the general relaxation model (eq. 1). T1 is known to 
depend on the motional model for the exchange process; several special motions have been discussed so far.

a.   VT-Solid state 2H NMR spectra of 2-d4.

Fig S22. Temperature dependence of solid-state 2H NMR spectra of 2-d2 [solid black line: observed spectra; 
dotted red line: spectra simulated with designated exchange rate constants, k, and degree of angular displacement, 
. The simulation model is mentioned in main text].
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b.  Analysis of temperature dependence of the 2H NMR spin-lattice relaxation (T1) 

measurements of 2-d2

Fig S23.  Representative inversion-recovery 2H NMR spectroscopy data and single exponential fit from solid 
sample of molecular gyrotop 2-d4 (240 K – 340 K).
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4.  Details of Optical properties of a single crystal of 2
The fast and slow optical axes were confirmed by a polarized-light microscope equipped with a sensitive 
color plate. Retardations were observed by the polarized-light microscope equipped with a Berek 
compensator and monochromatic light at 546 nm generated by a color filter. The thickness of the crystal 
was measured by a laser displacement sensor at 300 K. The n value was calculated from the 
retardation/thickness of the sample.

a. Crystal orientation mapping of a single crystal of 2

Fig S24. Crystal orientation mapping of a single crystal of 2 as determined 
by X-ray diffraction study at 300 K.

b. Thickness of the single crystal of 2

The thickness of the crystal was measured at 300 K using a laser displacement sensor 
(KEYENCE LT-9010M). 

    (a)                        (b)                        (c)

Fig S25. Measurement of the thickness of the single crystal of 2 at 300 K using a laser 
displacement sensor (KEYENCE LT-9010M); (a) 63.7  1.0 m;(b) 56.8  1.0 m; (c) 44.9  
1.0 m.
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c. Photograph of single crystals of 2 observed by polarized microscopy

Fig S26a. Photographs of the single crystal of 2 (sample thickness: 64  1 
m) showing the crystal face upon irradiation with polarized white light 
({100} face at 200 K).
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Fig S26b. Photographs of the single crystal of 2 (sample thickness: 57  1 
m) showing the crystal face upon irradiation with polarized white light 
({100} face at 200 K).
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Fig S26c. Photographs of the single crystal of 2 (sample thickness: 45  1 
m) showing the crystal face upon irradiation with polarized white light 
({100} face at 200 K).
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d. Temperature dependence of n of 2

Temperature dependence of birefringence (n) of the crystal face of a single crystal of 2, 

calculated from Retardation/Thickness as summarized in Table S2.

Table S2-1. Temperature Dependence of Retardation, and Δn of 2.

 (Thickness of the Single Crystal d = 44.9 μm)

Temperature / K Retardation 1) / nm 

cooling process | heating process  

n 2) / 10-3

cooling process | heating process

210 855.7 | 859.7 19.08 ± 0.60 | 19.16 ± 0.53
220 871.5 | 864.1 19.43 ± 0.47 | 19.26 ± 0.57
230 880.3 | 876.4 19.63 ± 0.50 | 19.54 ± 0.47
240 897.8 | 885.4 20.02 ± 0.53 | 19.74 ± 0.54
250 546.2 | 892.5 12.18 ± 0.29 | 19.90 ± 0.55
260 544.5 | 872.3 12.14 ± 0.33 | 19.45 ± 0.49
270 536.4 | 540.7 11.96 ± 0.29 | 12.01 ± 0.33
280 526.5 | 528.0 11.74 ± 0.31 | 11.79 ± 0.28
290 497.2 | 499.2 11.08 ± 0.28 | 11.13 ± 0.28
300 473.6 | 472.5 10.56 ± 0.28 | 10.53 ± 0.28
310 451.9 | 451.4 10.07 ± 0.28 | 10.07 ± 0.25
320 432.1 | 435.5 9.63 ± 0.27 | 9.72 ± 0.23
330 417.7 | 418.1 9.31 ± 0.24 | 9.32 ± 0.23
340 405.1 | 400.5 9.03 ± 0.32 | 8.93 ± 0.28
350 385.3 | 387.6 8.59 ± 0.29 | 8.64 ± 0.26
360 371.6 | 369.9 8.28 ± 0.26 | 8.25 ± 0.23
370 357.2 | 357.3 7.96 ± 0.23 | 7.97 ± 0.24

1) Mean values of three time measurements.

2) The error for the birefringencen includes both a measurement error of retardation and a thickness 

error (± 1.0).
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(Thickness of the Single Crystal d = 56.8 μm)

Temperature / K Retardation 1) / nm 

cooling process | heating process

n 2) / 10-3

cooling process | heating process

210 1105.6 | 1107.3 19.47 ± 0.43 | 19.50 ± 0.49
220 1112.5 | 1117.0 19.59 ± 0.47 | 19.67 ± 0.37
230 1129.6 | 1138.9 19.89 ± 0.49 | 20.06 ± 0.38
240 1151.3 | 1155.9 20.28 ± 0.42 | 20.36 ± 0.42
250 693.8 | 1162.0 12.22 ± 0.25 | 20.47 ± 0.45
260 683.4 | 1129.2 12.04 ± 0.24 | 19.89 ± 0.39
270 673.9 | 1056.0 11.87 ± 0.23 | 18.60 ± 0.48
280 663.1 | 666.0 11.68 ± 0.26 | 11.73 ± 0.32
290 631.7 | 628.3 11.13 ± 0.25 | 11.13 ± 0.25
300 601.1 | 599.4 10.60 ± 0.20 | 10.60 ± 0.20
310 570.2 | 571.0 10.04 ± 0.20 | 10.04 ± 0.20
320 548.1 | 548.6 9.65 ± 0.22 | 9.65 ± 0.22
330 524.7 | 526.5 9.24 ± 0.20 | 9.24 ± 0.20
340 508.4 | 506.5 8.95 ± 0.22 | 8.95 ± 0.22
350 489.5 | 489.1 8.62 ± 0.16 | 8.62 ± 0.16
360 470.2 | 470.2 8.28 ± 0.17 | 8.28 ± 0.17
370 452.1 | 449.5 7.96 ± 0.19 | 7.96 ± 0.19

1) Mean values of three time measurements.

2) The error for the birefringencen includes both a measurement error of retardation and a thickness 

error (± 1.0).
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e. Details of measurement of the optical axes of the single crystal of 2

On the {100}-face of the crystal at 300 K, the fast optical axis is observed to be parallel to 
<010> axis as ascertained from the decrease in the retardation by 147 nm, observed using a 
polarized-light microscope equipped with a 1/4 plate, which adds 147 nm along the <010> 
axis (FigS27(i)b). After rotation of the crystal by 90º, the retardation observed through the 
1/4 plate increased by 147 nm (Fig S27(i)c), indicating that the slow optical axis is 
perpendicular to <010> axis. On the other hand, in the case at 240 K the increment and 
decrement of the retardation observed through the 1/4 plate were opposite to that observed at 
300 K (Fig S27(ii)).  

Fig S27. Photographs of the single crystals of 2 (sample thickness: 63.7  1.0 m) on the 
crystal face upon irradiation with polarized white light and its retardation (R) ({100} face 
at 300 K). a, Normal photograph with directions of optical axes. b, Photograph through a 
1/4 plate. c, Photograph through a 1/4 plate after 90º rotation of the crystal. d, 
Photograph through a sensitive color plate. e, Photograph through a sensitive color plate 
after 90º rotation of the crystal.
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