Supplementary Information

Antioxidant properties of several Coumarin-Chalcone hybrids from theoretical insights.

Gloria Mazzone,^{a,b,*} Naim Malaj,^{a,c} Annia Galano,^d Nino Russo^a and Marirosa Toscano^a

^a Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, I-87036 Arcavacata di Rende, Italy.

^b Dipartimento di ingegneria Informatica, Modellistica, Elettronica e Sistemistica, Università della Calabria, I-87036 Arcavacata di Rende, Italy.

^c Dipartimento di Scienze Ambiente e Territorio e Scienze della Terra, Università di Milano-Bicocca, Via Pietro Bucci , 87036, Rende, Italy.

^d Departamento de Quimica, Division de Ciencias Basicas e Ingenieria, Universidad, Autonoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco No. 186, Col. Vicentina, CP 09340, Mexico, D.F., Mexico.

- Figure S1. Born-Haber thermodynamic cycle used to calculate $\Delta G_{(sol)}$ for a one-electron oxidation of a given phenolic species ArOH.
- Figure S2. B3LYP optimized geometries of all the considered coumarin-chalcone hybrids.
- Figure S3. Spin densities of the most stable radical species formed by H removal from the neutral form of each compound.
- Table S4. Bond dissociation enthalpies (BDE), O-H proton dissociation enthalpies (PDE), proton affinities (PA), electron transfer enthalpies (ETE) and adiabatic ionization potentials (IP) are reported in kcal/mol.
- Table S5. Energies of HOMO and LUMO for all compounds investigated, expressed in eV.
- Figure S6. Molecular surface contour plots for the highest occupied and lowest unoccupied molecular orbitals of all the investigated coumarin-chalcone derivatives.
- Figure S7. Molecular surface contour plots for the two highest occupied and lowest unoccupied molecular orbitals of coumarin and chalcone.
- Table S8. Main excitation energies (ΔE), oscillator strengths (f) and MO contribution (%) computed for 1-3, 5-8 and 10 compounds in methanol by using three different exchange and correlation functionals. All electronic states belong to ¹A.

$$\begin{array}{c|c} ArOH_{(gas)} & \xrightarrow{\Delta G_{(gas)}} ArOH_{(gas)}^{+\cdot} + e_{(g)}^{-} \\ & & & \\ \Delta G_{(solv,ArOH)} & & & \\ & & & \\ ArOH_{(sol)} & \xrightarrow{\Delta G_{(sol)}} ArOH_{(sol)}^{+\cdot} + e_{(g)}^{-} \end{array}$$

Compound	Site	BDE	PDE	PA	ETE	IP	
DHMCoumarin	60H	80.42	266.91	290.58	106.00	120.67	
DIMCOUIIIaI III	70H	80.96	267.45	287.59	109.53	129.07	
Helichrysetin	40H	84.48	269.41	290.91	109.74		
	4'0H	90.09	275.02	290.59	115.66	131.23	
	6'0H	99.48	284.41	296.30	119.35		
1	3'0H	82.27	257.43	293.01	105.43	141.00	
-	4'0H	82.39	257.55	287.94	110.61		
2	3'0H	82.28	264.72	293.11	105.33	133.72	
	4'0H	82.39	264.83	288.14	110.41	155.72	
	60H	87.22	269.46	294.26	109.12	133.92	
3	3'0H	82.37	264.61	292.75	105.78		
	4'0H	82.48	264.72	287.78	110.86		
	50H	87.88	271.78	287.20	116.85		
4	70H	89.27	273.17	287.28	118.15	132.27	
•	3'0H	81.76	265.66	293.01	104.92	152.27	
	4'0H	81.84	265.67	288.94	108.91		
	80H	87.60	269.59	288.98	114.78		
5	3'0H	82.42	264.40	291.70	106.88	134.18	
	4'0H	82.52	264.51	287.61	110.07		
	50H	73.90	266.97	287.26	102.80	123.09	
	60H	74.95	268.02	289.05	102.06		
6	70H	77.35	270.42	282.81	110.70		
U	80H	74.59	267.66	293.89	96.87		
	3'0H	81.87	274.94	292.08	105.95		
	4'0H	81.75	274.82	287.69	110.22		
	70H	82.36	265.75	397.58	112.43		
7	80H	80.75	264.13	397.59	107.49	132 78	
1	3'0H	82.18	265.56	289.42	105.43	132.70	
	4'0H	82.17	265.55	286.10	109.74		
	50H	78.05	263.51	397.53	108.51	130.70	
8	60H	79.35	264.82	287.83	103.85		
	3'0H	82.12	267.58	289.86	105.65		
	4'0H	82.13	267.59	291.67	110.61		
	50H	70.45	265.24	286.70	99.91		
	60H	74.27	269.07	291.71	98.72		
9	80H	77.12	271.92	294.07	99.22	121.37	
	3'0H	82.39	277.18	292.84	105.71		
	4'0H	82.28	277.07	288.28	110.17		
	50H	75.54	266.69	288.04	102.67		
10	80H	78.19	269.34	295.44	98.91	125.01	
	3'0H	82.05	273.20	292.42	105.79		
	4'0H	81.93	273.09	286.97	111.13		

Compound	٤ _{НОМО}	ε _{LUMO}	ΔE _{H-L}
1	-0.237	-0.098	0.139
2	-0.237	-0.096	0.141
3	-0.237	-0.098	0.139
4	-0.235	-0.094	0.141
5	-0.238	-0.102	0.136
6	-0.226	-0.096	0.130
7	-0.236	-0.096	0.140
8	-0.234	-0.098	0.136
9	-0.224	-0.099	0.125
10	-0.228	-0.099	0.129

-S7-

		B3LYP			PBE0			wB97XD		
Comp.	MO contribution	$\Delta \mathbf{E}$		£	$\Delta \mathbf{E}$		£	$\Delta \mathbf{E}$		£
		eV	nm	J	eV	nm	J	eV	nm	J
1	$H \rightarrow L (70\%)$	3.27	379	0.060	3.45	359	0.076	3.91	317	0.069
	$H-1 \rightarrow L (53\%)$	3.59	345	0.167	3.67	337	0.152	4.13	300	0.611
	$H-3 \rightarrow L (43\%); H-4 \rightarrow L (31\%)$	3.83	324	0.126	3.94	315	0.193	4.61	269	0.149
	$H \rightarrow L+1 (46\%); H-4 \rightarrow L(22\%)$	4.05	306	0.301	4.20	295	0.296	l		
2	$H \rightarrow L (70\%)$	3.30	376	0.070	3.48	357	0.090	3.89	318	0.134
	$H-1 \rightarrow L (62\%)$	3.54	350	0.214	3.64	341	0.208	4.05	306	0.382
	$H \rightarrow L+1$ (44%); $H-3 \rightarrow L$ (15%)	4.03	308	0.385	4.16	298	0.385	4.31	288	0.223
	$H \rightarrow L (69\%)$	3.26	380	0.092	3.43	362	0.204	3.80	326	0.257
	$H-1 \rightarrow L (69\%)$	3.33	372	0.099	3.47	358	0.020	4.27	290	0.392
3	$H \rightarrow L+1 (42\%); H-4 \rightarrow L (32\%)$	4.00	310	0.200	4.15	299	0.368	1		
	$H-1 \rightarrow L+1 (52\%)$	4.07	305	0.242	4.26	291	0.113	4.56	272	0.221
	$H-3 \rightarrow L (42\%); H \rightarrow L+1 (30\%)$	4.28	290	0.155	4.41	281	0.125	I		
5	$H \rightarrow L (70\%)$	3.17	391	0.043	3.35	370	0.056	4.20	295	0.634
	$\text{H-2} \rightarrow \text{L} (49\%); \text{H-4} \rightarrow \text{L} (41\%);$	3.60	344	0.131	4.02	308	0.318	4.41	281	0.174
	$H \rightarrow L+1$ (43%); $H-2 \rightarrow L$ (36%)	3.91	317	0.485	4.04	307	0.239	4.91	252	0.116
	$H \rightarrow L (70\%)$	2.94	421	0.059	3.07	404	0.067	3.53	350	0.181
6	$\text{H-1} \rightarrow \text{L} (70\%)$	3.28	378	0.148	3.46	359	0.335	3.80	327	0.385
	$H-2 \rightarrow L (65\%)$	3.39	365	0.361	3.50	254	0.208	4.34	286	0.112
	$H-1 \rightarrow L+1 (58\%); H-3 \rightarrow L (24\%)$	4.15	299	0.139	4.32	287	0.160	1		
7	$H \rightarrow L (70\%)$	3.28	377	0.148	3.46	358	0.293	3.81	325	0.454
	$\text{H-1} \rightarrow \text{L(66\%)}$	3.40	365	0.322	3.51	353	0.234	1		
	$H-4 \rightarrow L(52\%); H-4 \rightarrow L+1 (21\%)$	3.80	326	0.177	3.89	319	0.191	4.00	310	0.388
	$H \rightarrow L+1 (52\%); H-1 \rightarrow L+1 (27\%)$	4.15	299	0.113	4.32	286	0.122	!		
8	$H \rightarrow L (70\%)$	3.10	400	0.026	3.23	384	0.030	3.72	334	0.053
	$H-2 \rightarrow L (67\%); H-4 \rightarrow L+1(15\%)$	3.54	350	0.228	3.63	342	0.216	3.87	321	0.128
	$H-4 \rightarrow L(49\%); H-2 \rightarrow L(34\%)$	3.84	323	0.209	3.94	315	0.323	4.08	304	0.683
	$H \rightarrow L+1(65\%)$	4.01	309	0.168	4.24	292	0.123	1		
10	$H \rightarrow L (70\%)$	2.81	442	0.092	2.93	424	0.103	3.39	366	0.192
	$\text{H-2} \rightarrow \text{L} (61\%)$	3.50	354	0.321	3.59	345	0.309	3.85	322	0.188
	$\text{H-4} \rightarrow \text{L} (53\%); \text{H-2} \rightarrow \text{L} (27\%)$	3.80	326	0.214	3.84	323	0.110	4.01	309	0.479
	$H-1 \to L+1 \ (61\%)$	4.13	300	0.112	3.95	314	0.146	1		