Highly efficient photocatalytic hydrogen generation by incorporating CdS into ZnCr-layered double hydroxide interlayer

Guohua Zhang, Bizhou Lin*, Weiwei Yang, Shaofeng Jiang, Qianru Yao, Yilin Chen and Bifen Gao

Electronic Supplementary Information

		F F F F F F F F F F F F F F F F F F F	
sample	surface area ^a (m^2/g)	pore volume ^b (cm ³ /g)	average pore size ^c (nm)
ZnCr-LDH	33	0.11	3.8
CdS	74	0.14	2.5
CdS/ZnCr-LDH	86	0.17	3.8

^a BET specific surface area calculated from the linear part of BET plot.

^b Total pore volume taken from the volume of N₂ adsorbed at $p/p_0 = 0.98$.

^c Average pore radius was estimated from the Barrett–Joyner–Halenda formula.

 Table S2 Binding energies obtained from XPS measurements (eV)

0	0						
sample	Zn 2p _{3/2}	Zn 2p _{1/2}	Cr 2p _{3/2}	Cr 2p _{1/2}	Cd 3d _{5/2}	Cd 3d _{3/2}	S 2p _{3/2}
ZnCr-LDH	1021.7	1044.8	577.3	587.1	_	_	-
CdS	-	_	-	-	404.0	410.8	161.7
CdS/ZnCr-LDH	1021.4	1044.4	577.1	586.9	404.8	411.6	162.4

Table S3 Photocatalytic performances of photocatalysts*

irradiation		UV-visible			visible	
sample	ZnCr-LDH	CdS	CdS/ZnCr-LDH	ZnCr-LDH	CdS	CdS/ZnCr-LDH
$R_{\rm i}$ (quanta/sec)	3.71×10 ¹⁸	3.71×10 ¹⁸	3.71×10 ¹⁸	1.91×10 ¹⁸	1.91×10 ¹⁸	1.91×10 ¹⁸
$R_{\rm a}$ (quanta/sec)	2.16×10 ¹⁶	2.65×1017	1.50×10 ¹⁷	1.04×10^{16}	7.95×10 ¹⁶	3.19×10 ¹⁶
$R_{\rm H2}$ (µmol h ⁻¹)	12.8	96.6	216.4	0.7	21.6	37.4
QE (%)	19.8	12.1	48.2	2.4	9.1	42.6

* The calculation of quantum efficiency (QE) was conducted using the same procedure reported in literature (R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki and Y. Taga, *Science*, 2001, **293**, 269–271.

$$\mathrm{QE} = R_{\mathrm{r}}/R_{\mathrm{a}} = 2R_{\mathrm{H2}}/R_{\mathrm{a}},$$

where R_r is the reaction rate of photons involved in hydrogen generation, R_{H2} is the H₂ evolution rate, and R_a is the absorption rate of incident photons.

Take CdS/ZnCr-LDH sample for example. Under the UV-visible light irradiation, the wavelength of UV-Visible light is from 300 to 2500 nm, and the light intensity is 113 mW/cm². The irradiating area is 7.1 cm². The rate of incident photons (R_i) was determined to be 3.71×10^{18} quanta·sec⁻¹. The absorption rate of incident photons (R_a) was determined to 1.50×10^{17} quanta·sec⁻¹, using the following equation:

$$R_a = \int_{300}^{2500} S \times \alpha \times \rho(\lambda) d\lambda$$

where *S* is the area of the sample, α is the light absorption and $\rho(\lambda)$ is the light intensity density at wavelength λ . The H₂ evolution rate (*R*_{H2}) of CdS/ZnCr-LDH is 214.6 µmol·h⁻¹ under UV-visible light irradiation. Therefore, the quantum efficiency (QE) can be estimated as

 $QE = 2 \times (216.4 \times 10^{-6}/3.6 \times 10^{3}) \text{mol·sec}^{-1} \times 6.02 \times 10^{23} \text{quanta·mol}^{-1}/1.50 \times 10^{17} \text{ quanta·sec}^{-1} \times 100\% = 48.2\%$

Under the visible light irradiation, the wavelength of visible light is from 420 to 2500 nm, and the light intensity is 67 mW/cm², $R_i = 1.91 \times 10^{18}$ quanta·sec⁻¹. The absorption rate of incident photons (R_a) for CdS/ZnCr-LDH was determined to 3.19×10^{16} quanta·sec⁻¹. Based on $R_{H2} = 37.4 \mu \text{mol·h}^{-1}$ under visible light irradiation. Hence,

 $QE = 2 \times (37.4 \times 10^{-6} / 3.6 \times 10^{3}) \text{mol} \cdot \text{sec}^{-1} \times 6.02 \times 10^{23} \text{quanta} \cdot \text{mol}^{-1} / 3.19 \times 10^{16} \text{quanta} \cdot \text{sec}^{-1} \times 100\% = 42.6\%$

Fig. S1. The relationships between $(F(R)^*hv)^{\alpha}$ and photon energy (hv).

Fig. S2. Mott-Schottky plots of ZnCr-LDH and CdS.

Fig. S3. Comparison of hydrogen evolution activity of the different CdS/ZnCr-LDH nanohybrids prepared from the molar ratio of CdS:ZnCr-LDH being 1:2 (a), 1:1 (b) and 2:1 (c).

Fig. S4. Recyclability of photocatalytic hydrogen evolution over CdS/ZnCr-LDH under visible (A) and UV-visible (B) irradiation.