Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2014

Electronic Supplementary Information for RSC Advances

Alginic acid: a highly efficient renewable and heterogeneous bio-

polymeric catalyst for one-pot synthesis of the Hantzsch 1,4-

dihydropyridines

Mohammad G. Dekamin,* Siamand Ilkhanizadeh, Zahra Latifidoost, Hamed Daemi, Zahra Karimi and Mehdi Barikani

Contents	Page
1. Experimental section	2
1.1. Materials and methods	2
1.2. General procedure for fractionation of sodium alginate to its components	2
1.3. General procedure for preparation of alginic acid (1) from sodium alginate	2
1.4. Chemical characterization of sodium alginate	9
1.5. Thermo-Gravimetric analysis of sodium alginate and alginic acid (1)	10
1.6. Chemical characterization of alginic acid (1)	11
1.7. General procedure for the synthesis of 1,4-dihydropyridines (5-6) catalyzed by alginic acid (1)	12
1.8. Reusability of alginic acid catalyst (1) for the Hantzsch MCR	12
Table 1. Pseudo-four-component synthesis of different diethyl 1,4-DHP-3,5- dicarboxylate (5a-p) catalysed by alginic acid (1) in EtOH under reflux conditions	13
Table 2. Pseudo-four-component synthesis of different dimethyl 1,4-DHP-3,5- dicarboxylate (6a-p) catalysed by alginic acid (1) in EtOH under reflux conditions	15
Chemical characterization of diethyl 1,4-dihydro-2,6-dimethyl-4-(thiophen-2-yl)pyridine-3,5-dicarboxylate (50)	17
Chemical characterization of diethyl 2,6-dimethyl-4-styrylpyridine-1,4-dihydro-3,5- dicarboxylate (5p)	22
Chemical characterization of dimethyl 4-(4-chlorophenyl)-2,6-dimethyl-1,4- dihydropyridine-3,5-dicarboxylate (6b)	26

1. Experimental section

1.1. Materials and methods

Melting points were determined using an Electrothermal apparatus. The FTIR spectra of alginate and its derivatives were performed with a Bruker-Equinox 55 IR spectrometer (Ettlingen, Germany) which was equipped by H.ATR accessories with a ZnSe crystal. Moreover, FTIR spectra of 1,4-dihydropyridines were recorded as KBr pellets on a Shimadzu FT IR-8400S spectrometer. The ¹H NMR and ¹³C NMR spectra of 1,4-dihydropyridines and sodium alginate were recorded in deuterated chloroform (CDCl₃) and D₂O using spectrometers of Bruker Avance (250 MHz and 400 MHz), respectively. Analytical TLC was carried out using Merck 0.2 mm silica gel 60 F-254 Alplates. Thermal stability of the sodium alginate and alginic acid were evaluated by the TGA technique on a Polymer Lab TGA-1500 instrument (London) under a N₂ atmosphere from room temperature to 600 °C with a heating rate of 10 °C/min.

1.2. General procedure for the fractionation of sodium alginate to its components

Sodium alginate was partially hydrolyzed according to the controlled gellification method. 1.0 gram of polysaccharide was dissolved in 100 mL of deionized water at 50 °C and heated under reflux conditions with 3 mL of HCl (3 M) for 20 min. After cooling to room temperature, the suspension was centrifuged (3000×g, 20 min) and the insoluble fraction from the centrifugation was refluxed in 100 mL of HCl (0.3 M) for 2 h. After centrifugation (8500×g, 20 min), the insoluble material was neutralized with NaOH (1 M) and the pH was adjusted to 2.85 with HCl (1 M). The soluble fraction was neutralized and added to 100 mL of EtOH. The precipitate was collected by centrifugation (8500×g, 20 min) and dried at 50 °C invacuo for 12 h (block M). The fractions obtained in the first hydrolysis step with HCl (0.3 M) and the soluble fraction at second step at pH 2.85 were rich of heteropolymeric MG and polymannuronic acid residues, respectively. Finally, the insoluble fraction at pH 2.85 was attributed to the polyguluronic acid residues.

1.3. General procedure for preparation of alginic acid (1) from sodium alginate

Alginic acid was synthesized through a procedure described by Babak et al., with some modifications. Sodium alginate (4.0 g) was added to a mixture of HCl (0.6 N, 50 mL) and EtOH (40 mL) and stirred overnight at 4 °C. The solid fracture, alginic acid, was separated by filtration under vacuum using a coarse filter paper. Then, the alginic acid was purified by washing with EtOH and acetone and dried in the oven at 60 °C.

References: (a) F. Llanes, F. Sauriol, F. G. Morin, A. S. Perlin, *Can. J. Chem.* 1997, 75, 585–590; (b) T. M. Aida, T. Yamagata, M. Watanabe, R. L. Smith Jr, *Carbohydr. Polym.* 2010, *80*, 296–302; (c) T. A. Fenoradosoa, G. Ali, C. Delattre, C. Laroche, E. Petit, A. Wadouachi, P. Michaud, *J. Appl. Phycol.* 2010, *22*, 131–137; (d) S. Holtan, Q. Zhang, W. I. Strand, G. Skjåk-Bræk, *Biomacromolecules*, 2006, *7*, 2108-2121, (e) H. Daemi, M. Barikani, *Sci. Iran.* 2012, *19*, 2023–2028; (f) V. G. Babak, E. A. Skotnikova, I. G. Lukina, S. Pelletier, P. Hubert, E. J. Dellacherie, *J. Colloid. Interface Sci.* 2000, *225*, 505–510; (g) H. Daemi, M. Barikani, M. Barmar, *Int. J. Biol. Macromol.* 2014, *66*, 212–220.

1.4. Chemical characterization of sodium alginate

Fig. 1. FT-IR spectrum of the commercial sodium alginate.

Fig. 2. FT-IR spectrum of the heterogenous copolymer containing random M and G blocks.

Fig. 3. FT-IR spectrum of the sodium homopolymannuronate.

Fig. 4. FT-IR spectrum of the sodium homopolyguluronate.

Fig. 5. A comparison between the FT-IR spectra of different constituents of the sodium alginate.

Fig. 6. ¹H NMR spectrum of sodium alginate.

Fig. 7. ¹H NMR spectrum of sodium alginate (Expanded aliphatic region).

1.5. Thermo Gravimetric analysis of sodium alginate and alginic acid (1)

As seen in thermograms of sodium alginate and alginic acid, the hydrophilicity of sodium alginate is significantly more than that insoluble form, i.e. alginic acid. Therefore, the insoluble form of alginate is a more appropriate candidate as a bifunctional heterogeneous catalyst compared to its soluble form.

Fig. 8. TGA thermograms of sodium alginate and alginic acid (1).

1.6. Chemical characterization of alginic acid (1)

Fig. 9. FT-IR spectrum of prepared alginic acid (1).

1.7. General procedure for the synthesis of 1,4-dihydropyridines (5-6) catalyzed by alginic acid (1)

In a 5 mL round bottom flask equipped with a magnetic bar and condenser, a mixture of aldehyde (2, 1 mmol), β -ketoester (3, 2 mmol), ammonium acetate (4a, 1.2 mmol) and alginic acid (1, 17.6 mg, 10 mol% relative to the aldehyde) was added to 1 mL of 96% EtOH. The resulting mixture was stirred at reflux conditions for appropriate time indicated in Tables 1 or 2. After completion of the reaction (monitored by TLC), it was diluted with 2 mL of 96% EtOH and filtered. Then, distilled water was added dropwise with continuous stirring to the filtrate to provide crystals of 1,4-DHP 5 or 6. The separated crystals were filtered off, washed with cold aqueous EtOH (50% v/v, 2 mL) and dried at 60 °C in an air oven for 1 h.

1.8. Reusability of alginic acid catalyst (1) for the Hantzsch MCR

The reusability of the catalyst **1** was investigated in the consecutive Hantzsch reaction of 4chlorobenzaldehyde (**2a**, 1 mmol), ethyl acetoacetate (**3a**, 2 mmol) and ammonium acetate **4a** (1.2 mmol). The reactions were carried out according to the above general procedure for synthesis of 1,4-DHPs **5**. After the first run, which afforded the diethyl 4-(4-chlorophenyl)-2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate (**5a**) in 96% isolated yield (100% conversion), the separated catalyst was washed with fresh aliquot of EtOAc (3 x 1 mL), dried in an air oven at 60 °C, and then was subjected to a second Hantzsch reaction from which it also gave the Hantzsch reaction products in 100% conversion (95% isolated yield); the average chemical yield for six repeated runs was 94%.

Entry	Aldehyde 2	Product 5^{b}	Time (min)	Yield (%) ^c	M.P (Obsd) (°C)	M.P (Ref) (°C)
1	Formaldehyde 2a	5a (Diludine)	25	97	177-180	183
2	4-Chlorobenzaldehyde 2b		50	96	144-145	145-146
3	4-Fluorobenzaldehyde 2c	5b 5b 5c	45	97	152-153	151-155
4	4-Nitrobenzaldehyde 2d	→	50	83	125-127	136
5	3-Nitrobenzaldehyde 2e	NO2 NO2 NO2 NO2 AE	60	77	166-168	163
6	4-Bromobenzaldehyde 2f		35	93	162-164	162-164
7	2-Chlorobenzaldehyde 2g	51 CC CC CC CC CC CC CC CC CC CC CC CC CC	60	86	131-133	129-130

Table 1. Pseudo-four-component synthesis of different diethyl 1,4-DHP-3,5-dicarboxylate (5a-p) catalysed by

 alginic acid (1) in EtOH under reflux conditions^a

8	2,4- Dichlorobenzaldehyde 2h	° ⊂ ⊂ ⊂ ⊂ ⊂ ⊂ ⊂ ⊂ ⊂ ⊂ ⊂ ⊂ ⊂ ⊂ ⊂ ⊂ ⊂ ⊂ ⊂	65	87	146-148	148-149
9	Benzaldehyde 2i	Si	45	96	156-158	157-159
10	4-Methylbenzaldehyde 2j	sj	60	92	135-137	135-138
11	4- Methoxybenzaldehyde 2k	o ^{Me} ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	70	91	160-161	158-160
12	4- Hydroxybenzaldehyde 2l	SI	90	92	228-231	229-231
13	4-Hydroxy-3- methoxybenzaldehyde (Vanilin) 2m	OH OMe O O O O O O O O O O O O O O O O O O	80	90	160-162	160-164
14	Furfural 2n	Sn Sn	55	93	160-161	160-161
15	Thiophen-2- carbaldehyde 20	50 50	70	98	169-171	172-174

^{*a*} Reaction conditions: Aldehyde (**2a**, 1 mmol), ethyl acetoacetate (**3a**, 2 mmol), ammonium acetate (**4a**, 1.2 mmol). ^{*b*} All the products are known compounds and were identified by comparison of their TLC, physical and spectral (IR, ¹H NMR) data with those of authentic samples. ^{*c*} Isolated yields.

Entry	Aldehyde 2	Product 6 ^b	Time (min)	Yield (%) ^c	M.P (Obsd) (°C)	M.P (ref) (°C)
1	Formaldehyde 2a		20	96	220-222	222-224
2	4-Chlorobenzaldehyde 2b		50	94	196-198	196-198
3	4-Fluorobenzaldehyde 2c		40	97	171-172	176-179
4	4-Nitrobenzaldehyde 2d	No ₂	60	85	196-198	196-198
5	3-Nitrobenzaldehyde 2e		50	79	210-211	210-212
6	4-Bromobenzaldehyde 2f	of of of the second sec	30	94	201-202	200-202
7	2-Chlorobenzaldehyde 2g	o 6g	60	88	184-185	185-186

by alginic acid (1) in EtOH under reflux conditions^{*a*}

2,4-Dichlorobenzaldehyde **2h**

8

6h

70

93

188-190

190-192

^{*a*} Reaction conditions: Aldehyde (**2a**, 1 mmol), methyl acetoacetate (**3b**, 2 mmol), ammonium acetate (**4a**, 1.2 mmol). ^{*b*} All the products are known compounds and were identified by comparison of their TLC, physical and spectral (IR, ¹H NMR) data with those of authentic samples. ^{*c*} Isolated yields.

References: (a) S. Ghosh, F. Saikh, J. Das, A. K. Pramanik, *Tetrahedron Lett.* 2013, *54*, 58–62; (b) B. S. Furniss, A. J. Hannaford, P. W. G. Smith, Text book of Practical Organic Chemistry, 5th ed.; Singapore: Longman Singapore, 1994. p. 1168; (c) J. Jacques, V. Eynde, F. Delfaese, A. Mayence, Y. V. Haverbeke, *Tetrahedron* 1995, *51*, 6511–6516; (d) B. Leov, K. M. Snader, *J. Org. Chem.* 1965, *30*, 1914–1916; (e) B. Leov, K. M. S. Lakshmi, *Bioorg. Med. Chem. Lett.* 2012, *22*, 6016–6023; (f) P. P. Ghosh, P. Mukherjee, A. R. Das, *RSC Adv.* 2013, *3*, 8220–8226; (g) M. Nasr-Esfahani, S. J. Hoseini, M. Montazerozohori, R. Mehrabi, H. Nasrabadi, *J. Mol. Catal. A: Chem.* 2014, *382*, 99–105; (h) A. Debache, W. Ghalem, R. Boulcina, A. Belfaitah, S. Rhouatiand, B. Carboni, *Tetrahedron Lett.* 2009, *50*, 5248–5250; (i) S. Patil, P. B. Pawar, S. D. Jadhav, M. B. Deshmukh, *Asian J. Chem.* 2013, *25*, 9442–9446; (j) A. Shaabani, A. H. Rezayanand, A. Rahmati, M. Sharifi, *Monatsh. Chem.* 2006, *137*, 77–81; (k) P. Kaur, H. Sharma, R. Rana, D.N. Prasad, R. K. Singh, *Asian J. Chem.* 2012, *24*, 5649–5651; (l) R. H. Boecker, F. P. Guengerich. *J. Med. Chem.* 1986, *29*, 1596–1603; (m) J. L. Wang, B. K. Liu, C. Yin, Q. Wu, X. F. Lin, *Tetrahedron* 2011, *67*, 2689–2692; (n) B. M. Khadilkar, V. G Gaikar, A. A. Chitnavis, *Tetrahedron Lett.* 1995, *36*, 8083–8086; (o) K. Rajesh, B. P. Reddy, V. Vijayakumar, *Can. J. Chem.* 2011, *89*, 1236-1244; (p) H. Salehi, Q. X. Guo, *Synthetic Commun.* 2004, *34*, 4349–4357.

Chemical characterization of diethyl 1,4-dihydro-2,6-dimethyl-4-(thiophen-2-yl)pyridine-3,5-dicarboxylate (50)

Yellowish white crystals, mp 167–169 °C, yield: 98%, IR (KBr) cm⁻¹: 3344, 3099, 2925, 2853, 1693, 1655, 1487, 1369, 1300, 1211, 1128, 1093, 854, 721, ¹H NMR (250 MHz, CDCl₃): δ (ppm): 1.29 (t, *J* =7.1 Hz, 6H), 2.36 (s, 6H), 4.20 (m, 4H), 5.36 (s, 1H, C–H_{benzylic}), 5.77 (brs, 1H, N–H), 6.81–6.82 (d, *J* =3.5 Hz, 1H), 6.85–6.88 (t, *J* =5.0 Hz, 1H), 7.06–7.08 (dd, *J* =5.0 Hz, *J* =1.2 Hz, 1H); ¹³C NMR (CDCl₃, 75 MHz) δ (ppm): 15.9, 20.4, 32.8, 61.2, 101.3, 105.1, 111.6, 141.0, 145.9, 159.4, 166.6.

Fig. 11. ¹H NMR spectrum of diethyl 1,4-dihydro-2,6-dimethyl-4-(thiophen-2-yl)pyridine-3,5-dicarboxylate (**50**) in CDCl₃.

Fig. 12. ¹H NMR spectrum of diethyl 1,4-dihydro-2,6-dimethyl-4-(thiophen-2-yl)pyridine-3,5-dicarboxylate (**50**) in CDCl₃ (Expanded aliphatic region).

Fig. 13. ¹H NMR spectrum of diethyl 1,4-dihydro-2,6-dimethyl-4-(thiophen-2-yl)pyridine-3,5-dicarboxylate (**50**) in CDCl₃ (Expanded aliphatic region).

Fig. 14. ¹H NMR spectrum of diethyl 1,4-dihydro-2,6-dimethyl-4-(thiophen-2-yl)pyridine-3,5-dicarboxylate (**50**) in CDCl₃ (Expanded aromatic region).

Chemical characterization of diethyl 2,6-dimethyl-4-styrylpyridine-1,4-dihydro-3,5-dicarboxylate (5p) Yellow crystals, mp 145–147 °C, yield: 94%, IR (KBr) cm⁻¹: 3432, 3336, 3244, 3097, 2980, 2320, 1690, 1645, 1491, 1446, 1373, 1327, 1298, 1220, 1120, 749, ¹H NMR (250 MHz, CDCl₃) δ (ppm): 1.31 (t, *J*=7.0 Hz, 6H), 2.35 (s, 6H), 4.20 (m, 4H), 4.64 (d, *J*=6.0 Hz, 1H, C-H_{benzylic}), 5.62 (brs, 1H, N-H), 6.16- 6.29 (m, 2H), 7.14–7.36 (m, 5H), ¹³C NMR (CDCl₃, 75 MHz) δ (ppm): 14.5, 19.2, 37.1, 58.1, 102.6, 119.3, 120.2, 127.5, 128.8, 130.9, 133.0, 136.4, 147.7, 169.2.

Fig. 15. FT-IR spectrum of diethyl 2,6-dimethyl-4-styrylpyridine-1,4-dihydro-3,5-dicarboxylate (5p).

Fig. 16. ¹H NMR spectrum of diethyl 2,6-dimethyl-4-styrylpyridine-1,4-dihydro-3,5-dicarboxylate (**5p**) in CDCl₃.

Fig. 17. ¹H NMR spectrum of diethyl 2,6-dimethyl-4-styrylpyridine-1,4-dihydro-3,5-dicarboxylate (**5p**) in CDCl₃ (Expanded aliphatic region).

Fig. 18. ¹H NMR spectrum of diethyl 2,6-dimethyl-4-styrylpyridine-1,4-dihydro-3,5-dicarboxylate (**5p**) in CDCl₃ (Expanded aliphatic region).

Fig. 19. ¹H NMR spectrum of diethyl 2,6-dimethyl-4-styrylpyridine-1,4-dihydro-3,5-dicarboxylate **(5p)** in CDCl₃ (Expanded aromatic region)

Chemical characterization of dimethyl 4-(4-chlorophenyl)-2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate (6b)

Yellowish white crystals, mp 160–162 °C, yield: 90%, IR (KBr) cm⁻¹: 3336, 3097, 2923, 1699, 1651, 1487, 1434, 1305, 1213, 1184, 1099, 1018, 845, 750, ¹H NMR (250 MHz, CDCl₃): δ (ppm): 2.36 (s, 6H), 3.66 (s, 6H), 4.98 (s, 1H, C-H_{benzylic}), 5.63 (brs, 1H, N-H), 7.20–7.24 (d, 4H); ¹³C NMR (CDCl₃, 75 MHz) δ (ppm): 20.1, 31.4, 39.9, 114.5, 127.7, 129.2, 131.1, 144.9, 195.1.

Fig. 20. FTIR spectrum of dimethyl 4-(4-chlorophenyl)-2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate (6b).

Fig. 21. ¹H NMR spectrum of dimethyl 4-(4-chlorophenyl)-2,6-dimethyl-1,4-dihydropyridine-3,5dicarboxylate (**6b**) in CDCl₃.

Fig. 22. ¹H NMR spectrum of dimethyl 4-(4-chlorophenyl)-2,6-dimethyl-1,4-dihydropyridine-3,5dicarboxylate (**6b**) in CDCl₃ (Expanded aliphatic region).

Fig. 23. ¹H NMR spectrum of dimethyl 4-(4-chlorophenyl)-2,6-dimethyl-1,4-dihydropyridine-3,5dicarboxylate (**6b**) in CDCl₃ (Expanded aromatic region).