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Figure S-1. Cross-sectional SEM image of the bare-ZnO NRs obtained after 4hrs growth (Z0). Scale bar is 3μm.

Figure S-2.  TEM image of a single ZnO core-TiO2 shell hybrid structure with the modification time of 120mins (TZ4). Scale bar is 
200nm. The thickness of the shell is around 55nm

Figure S-3.  (a)Cross section of the TZ4 and (b) the corresponding EDS line scan



Impedance spectra 

Equivalent circuit used to fit EIS results are followed by previous studies [1,2,3]. The fitting was achieved by zview 

software (Scribner Associates, Inc.) using non-linear least squares regression. Constant phase elements(CPEs) are 

used to replace all capacitances to improve quality of fits. However, the EIS results do not show a clear 

transmission-line feature in this experiment, which is commonly attributed to a good electron transport in the 

semiconductor oxide (i.e. ZnO) [4,5]. For this reason, it is not possible to extract reliable values from the 

equivalent circuit-fitting and we limited our study to analyse the recombination behavior of the NRs and hybrid 

nanostructures.

The details of the circuit are:

Rs: series resistance, including the sheet resistance of TCO glass and contact resistance of the cell

Rco: resistance at ITO/seed layer/nanostructure contact

CCO: the capacitance at ITO/seed layer/nanostructure contact

RCt& CCt: the charge-transfer resistance and the corresponding double-layer capacitance at exposed ITO/electrolyte 

interface

rt: the transport resistance of electrons in ZnO/TiO2 nanostructure

rct: charge-transfer resistance of the charge recombination process

Cμ: the capacitance of the nanostructure/electrolyte interface

RPt: charge-transfer resistance at the counter electrode (Pt coated ITO)

CPt: double-layer capacitance at the counter electrode (Pt coated ITO)

Zd: Warburg element showing the Nernst diffusion of I3
- in electrolyte

Electron transport

Measurements of electron transport time followed procedures reported in Ref. [6].  A square-wave pulse 

was applied to a white-light LED, used to illuminate the DSSCs. The modulation amplitude produced a 

<10% change in DSSC current. The current was determined by ohm law and an average of 5 photocurrent 

transient signals was recorded for each test.



Figure S-4. (a) Representative transient photo current decay at a short circuit work condition of Z0, TZ2 and TZ4 (b) Fitted electron 
transport time constants (τtr) versus short circuit current for all the samples.

Fig. S-4(a) shows representative transient photo current decay at a short circuit work condition for Z0, TZ2, and 

TZ4. Each transient is fitted by the following equation:

𝑦= 𝑦0 + 𝐴𝑒
‒ 𝑡/𝜏𝑡𝑟

where τtr is the characteristic time for electron transport. The values of characteristic time for τtr under a 

range of light intensities are plotted against the corresponding short-circuit current density JSC in Fig. S-

4(b).
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