Supporting Information

Low temperature growth of hybrid ZnO/TiO2 nanosculptured foxtail-structures for dye-sensitized solar cells

Chao. Zhao ^a, David. Child ^a, Yue. Hu^b, Neil. Robertson ^b, Des. Gibson ^{a, c}, Shun. Cai. Wang ^d and Yong.Qing. Fu^{a,*}

^{*a*} Thin Film Centre, Scottish Universities Physics Alliance (SUPA), University of the West of Scotland, Paisley, PA1 2BE, UK.

^b EaStCHEM School of Chemistry, University of Edinburgh, King's Buildings, Edinburgh, EH9 3JJ

^c Thin Film Solutions Ltd, Block 7, West of Scotland Science Park, Kelvin Campus, Maryhill Rd, Glasgow G20 0SP, UK.

^d School of Engineering and the Environment, University of Southampton, Highfield, Southampton, SO17 1BJ, UK.

* Corresponding author: Dr. Richard Y. Q. Fu, e-mail: richard.fu@uws.ac.uk

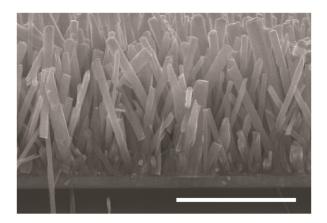


Figure S-1. Cross-sectional SEM image of the bare-ZnO NRs obtained after 4hrs growth (Z0). Scale bar is 3µm.

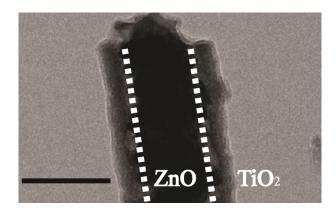
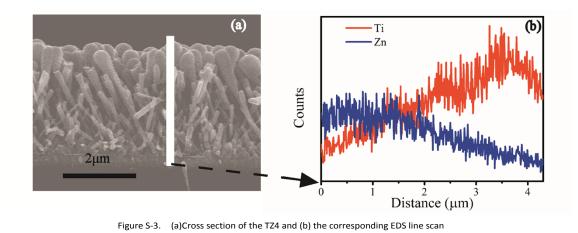



Figure S-2. TEM image of a single ZnO core-TiO2 shell hybrid structure with the modification time of 120mins (TZ4). Scale bar is 200nm. The thickness of the shell is around 55nm

Impedance spectra

Equivalent circuit used to fit EIS results are followed by previous studies $[^{1,2,3}]$. The fitting was achieved by zview software (Scribner Associates, Inc.) using non-linear least squares regression. Constant phase elements(CPEs) are used to replace all capacitances to improve quality of fits. However, the EIS results do not show a clear transmission-line feature in this experiment, which is commonly attributed to a good electron transport in the semiconductor oxide (i.e. ZnO) [4,5]. For this reason, it is not possible to extract reliable values from the equivalent circuit-fitting and we limited our study to analyse the recombination behavior of the NRs and hybrid nanostructures.

The details of the circuit are:

Rs: series resistance, including the sheet resistance of TCO glass and contact resistance of the cell

 R_{co} : resistance at ITO/seed layer/nanostructure contact

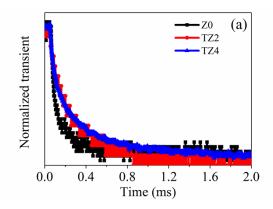
C_{CO}: the capacitance at ITO/seed layer/nanostructure contact

R_{Ct}& C_{Ct}: the charge-transfer resistance and the corresponding double-layer capacitance at exposed ITO/electrolyte interface

rt: the transport resistance of electrons in ZnO/TiO2 nanostructure

rct: charge-transfer resistance of the charge recombination process

C_u: the capacitance of the nanostructure/electrolyte interface


R_{Pt}: charge-transfer resistance at the counter electrode (Pt coated ITO)

CPt: double-layer capacitance at the counter electrode (Pt coated ITO)

 Z_d : Warburg element showing the Nernst diffusion of I_3 in electrolyte

Electron transport

Measurements of electron transport time followed procedures reported in Ref. [6]. A square-wave pulse was applied to a white-light LED, used to illuminate the DSSCs. The modulation amplitude produced a <10% change in DSSC current. The current was determined by ohm law and an average of 5 photocurrent transient signals was recorded for each test.

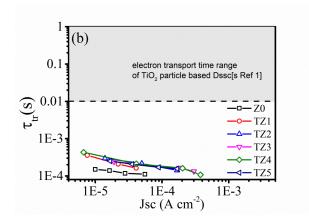


Figure S-4. (a) Representative transient photo current decay at a short circuit work condition of Z0, TZ2 and TZ4 (b) Fitted electron transport time constants (τ_{tr}) versus short circuit current for all the samples.

Fig. S-4(a) shows representative transient photo current decay at a short circuit work condition for Z0, TZ2, and TZ4. Each transient is fitted by the following equation:

$$y = y_0 + Ae^{-t/\tau} \tau_{tr}$$

where τtr is the characteristic time for electron transport. The values of characteristic time for τtr under a range of light intensities are plotted against the corresponding short-circuit current density J_{SC} in Fig. S-4(b).

¹ J. Bisquert, J. Phys. Chem. B, 2002, 106, 325-333

² F. Fabregat-Santiago, J. Bisquert, E. Palomares, L. Otero, D. Kuang, S. M. Zakeeruddin and M. Grätzel, J. Phys. Chem. C, 2007, 111, 6550-6560.

³ P. R. F. Barnes, K. Miettunen, X. Li, A. Y. Anderson, T. Bessho, M. Gratzel and B. C. O'Regan, Adv. Mater., 2013, 25, 1881-1922.

⁴ F. Fabregat-Santiago, J. Bisquert, G. Garcia-Belmonte, G. Boschloo and A. Hagfeldt, Sol. Energy Mater. Sol. Cells, 2005, 87, 117-131.

⁵ E. Guillen, E. Azaceta, L. M. Peter, A. Zukal, R. Tena-Zaera and J. A. Anta, Energy Environ. Sci., 2011, 4, 3400-3407.

⁶ V. Manthina, J. P. Correa Baena, G. Liu and A. G. Agrios, J. Phys. Chem. C, 2012, 116, 23864-23870.