Supplementary Information

Binding and removal of octahedral, tetrahedral, square planar and linear anions in water by means of activated carbon functionalized with a pyrimidine-based anion receptor

Paloma Arranz Mascaros,^a Carla Bazzicalupi,^b Antonio Bianchi,^{b*} Claudia Giorgi,^b M. Luz Godino Salido,^a Maria Dolores Gutiérrez Valero,^a Rafael López Garzon,^{a*} Matteo Savastano^b ^a Department of Inorganic and Organic Chemistry, University of Jaén 23071, Jaén, Spain. E-mail: rlopez@ujaen.es ^b Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019,

Sesto Fiorentino, Italy. E-mail: antonio.bianchi@unifi.it

Contents

Figure S1.Selectivity diagrams calculate for the systems $HL/L1/S_2O_3^{2-}$,S3 $HL/L1/Co(CN)_6^{3-}$, $HL/L1/Au(S_2O_3)_2^{3-}$ and $HL/L1/Pt(CN)_4^{2-}$.

Figure S2. Conditional stability constants calculated as a function of pH for the systemsS4 $HL/L1/Au(S_2O_3)_2^{3-}$, $HL/L1/S_2O_3^{2-}$, $HL/L1/Fe(CN)_6^{4-}$, $HL/L1/Co(CN)_6^{3-}$, $HL/L1/SeO_4^{2-}$ and $HL/L1/Pt(CN)_4^{2-}$.S4

Table S1. Overall equilibrium constants for the formation of anion complexes with HLS5determined by means of potentiometric measurements in 0.1M Me₄NCl aqueous solution at298.1 K.

Table S2. Overall equilibrium constants for the formation of anion complexes with tren (L1)S6determined by means of potentiometric measurements in 0.1M Me₄NCl aqueous solution at298.1 K.

Figure S1. Selectivity diagrams calculated for the systems $HL/L1/S_2O_3^{2-}$, $HL/L1/Co(CN)_6^{3-}$, $HL/L1/Au(S_2O_3)_2^{3-}$ and $HL/L1/Pt(CN)_4^{2-}$, showing the percentage of anion bound to each ligand as a function of pH. All reagents 1×10^{-3} M.

Figure S2. Conditional stability constants calculated as a function of pH for the systems $HL/L1/Au(S_2O_3)_2^{3-}$, $HL/L1/S_2O_3^{2-}$, $HL/L1/Fe(CN)_6^{4-}$, $HL/L1/Co(CN)_6^{3-}$, systems $HL/L1/SeO_4^{2-}$ and and $HL/L1/Pt(CN)_4^{2-}$.

Table S1. Overall equilibrium constants for the formation of anion complexes with HL determined by means of potentiometric measurements in 0.1M Me₄NCl aqueous solution at 298.1 K.

	$\log \beta$
Equilibria	
$2H^+ + L^- + Fe(CN)_6^4 = [H_2L(Fe(CN)_6)]^3$	23.55(6) ^a
$3H^+ + L^- + Fe(CN)_6^{4-} = [H_3L(Fe(CN)_6)]^{2-}$	33.04(5)
$4H^+ + L^- + Fe(CN)_6^{4-} = [H_4L(Fe(CN)_6)]^-$	36.56(7)
$5H^+ + L^- + Fe(CN)_6^{4-} = [H_5L(Fe(CN)_6)]$	39.40(6)
$2H^+ + L^- + Au(S_2O_3)_2^{3-} = [H_2L(Au(S_2O_3)_2)]^{2-}$	22.97(6)
$3H^+ + L^- + Au(S_2O_3)_2^{3-} = [H_3L(Au(S_2O_3)_2)]^-$	32.70(4)
$4H^++L^-+Au(S_2O_3)_2^{3-}=[H_4L(Au(S_2O_3)_2)]$	35.37(5)

^a Values in parentheses are standard deviations on the last significant figures.

	$\log \beta$
Equilibria	
$2H^+ + L1 + S_2O_3^{2-} = [H_2L1(S_2O_3)]$	21.23(6) ^a
$3H^+ + L1 + S_2O_3^{2-} = [H_3L1(S_2O_3)]^+$	30.09(5)
$4H^{+} + L1 + S_2O_3^{2-} = [H_4L1(S_2O_3)]^{2+}$	32.28(5)
$2H^+ + L1 + SeO_4^{2-} = [H_2L1(SeO_4)]$	21.20(4)
$3H^+ + L1 + SeO_4^{2-} = [H_3L1(SeO_4)]^+$	29.94(4)
$4H^+ + L1 + SeO_4^{2-} = [H_4L1(SeO_4)]^{2+}$	32.59(4)
$H^+ + L1 + Pt(CN)_4^{2-} = [HL1(Pt(CN)_4)]^{-}$	12.20(6)
$2H^+ + L1 + Pt(CN)_4^{2-} = [H_2L1(Pt(CN)_4)]$	21.88(5)
$3H^+ + L1 + Pt(CN)_4^{2-} = [H_3L1(Pt(CN)_4)]^+$	30.19(5)
$H^+ + L1 + Co(CN)_6^{3-} = [HL1(Co(CN)_6)]^{2-}$	13.28(7)
$2H^+ + L1 + Co(CN)_6^{3-} = [H_2L1(Co(CN)_6)]^{-}$	22.92(5)
$3H^+ + L1 + Co(CN)_6^{3-} = [H_3L1(Co(CN)_6)]$	31.83(5)
$4H^+ + L1 + Co(CN)_6^{3-} = [H_4L1(Co(CN)_6)]^+$	34.19(5)
$H^+ + L1 + Fe(CN)_6^{4-} = [HL1(Fe(CN)_6)]^{3-}$	13.41(5)
$2H^+ + L1 + Fe(CN)_6^{4-} = [H_2L1(Fe(CN)_6)]^{2-}$	23.04(6)
$3H^+ + L1 + Fe(CN)_6^{4-} = [H_3L1(Fe(CN)_6)]^{-}$	32.00(7)
$4H^+ + L1 + Fe(CN)_6^{4-} = [H_4L1(Fe(CN)_6)]$	34.78(5)
$2H^+ + L1 + Au(S_2O_3)_2^{3-} = [H_2L1(Au(S_2O_3)_2)]^{-}$	21.85(4)
$3H^+ + L1 + Au(S_2O_3)_2^{3-} = [H_3L1(Au(S_2O_3)_2)]$	30.48(6)
$4H^+ + L1 + Au(S_2O_3)_2^{3-} = [H_4L1(Au(S_2O_3)_2)]^+$	31.97(5)

Table S2. Overall equilibrium constants for the formation of anion complexes with tren (L1) determined by means of potentiometric measurements in $0.1M \text{ Me}_4\text{NCl}$ aqueous solution at 298.1 K.

^a Values in parentheses are standard deviations on the last significant figures.