Electronic Supplementary Information (ESI)

Synthesis, structural investigations and corrosion inhibition studies on Mn(II), Co(II), Ni(II), Cu(II) and Zn(II) complexes with 2-aminobenzoic acid (phenyl-pyridin-2-yl-methylene)-hydrazide

Pooja Singh^a, Divya Pratap Singh^a, Karishma Tiwari^a, Monika Mishra^a, Ashish K. Singh^b and Vinod P. Singh^{a*}

^aDepartment of Chemistry, Banaras Hindu University, Varanasi 221005, India ^bDepartment of Chemistry, North West University (Mafikeng Campus), Mmabatho 2735, South Africa.

*E mail: singvp@yahoo.co.in

Table of Contents

1.	¹ H spectra of Hbpph and [Zn(bpah) ₂] ————————————————————————————————————	S ₂₋₃
2.	¹³ C spectra of Hbpph and [Zn(bpah) ₂]	S ₄₋₅
3.	$\pi \cdots \pi$ and C-H $\cdots \pi$ interactions in different compounds ———	S ₆₋₈
4.	Orbital diagram showing electronic transitions in Co(II) complex-	· S ₉
5.	Tables for theoretical structural parameters	S ₁₀₋₁₁

Fig. S1 ¹H NMR spectra of Habph in DMSO-d₆.

Fig. S2 ¹H NMR spectra of $[Zn(abph)_2]$ in DMSO-d₆.

Fig. S3 ¹³C NMR spectra of Habph in DMSO-d₆.

Fig. S4 ¹³C NMR spectra of [Zn(abph)₂] in DMSO-d₆.

Fig. S5 Various types of C-H··· π interactions in Habph.

Fig. S6 Various types of $\pi \cdots \pi$ and C-H $\cdots \pi$ interactions in [Mn(abph)₂].

Fig. S7 Various types of $\pi \cdots \pi$ and C-H $\cdots \pi$ interactions in [Ni(abph)₂].

Fig. S8 Various types of $\pi \cdots \pi$ and C-H $\cdots \pi$ interactions in [Cu(abph)₂].

Fig. S9 Various types of $\pi \cdots \pi$ and C-H $\cdots \pi$ interactions in [Zn(abph)₂]. 2H₂O.

Bond length (Å)		Bond angles (°)	
Co-N(1)	2.199	O(2)–Co–N(6)	74.6
Co-N(2)	2.097	N(6)–Co–N(5)	74.9
Co-O(1)	2.084	N(5)–Co-O(1)	89.2
Co-N(5)	2.193	N(2)–Co–O(1)	74.5
Co-N(6)	2.097	O(2)–Co–O(1)	107.2
Co–O(2)	2.088	N(2)–Co–N(1)	89.5
N(2)–C(6)	1.364	N(5)–Co–N(5)	75.0
N(3)–C(13)	1.308		
C(25)–N(6)	1.364		
C(32)–N(7)	1.308		
C(13)–O(1)	1,274		

Fig. S10. Orbital diagram showing electronic transitions in Co(II) complex.

Table S1 Selected bond lengths and angles calculated by UB3LYP method for Co(II) complex.

Table S2 Comparison of experimental and theoretical vibrational frequencies of Co(II) complex.

S.N.	UV (Exp.)	UV (Calc.)	Transition	Assignments
	$\lambda_{max}\left(nm\right)$	$\lambda_{max}\left(nm\right)$		
1	-	1304	HOMO-1 \rightarrow LUMO+1 (β)	d_{xy} , d_{yz} , d_{xz} to $d_x^2 - y^2$, d_z^2
			0.28	
2	659	663	HOMO(α) \rightarrow LUMO+2 (β)	π (Ligand), d_{xy} , d_{yz} , d_{xz} to d
			0.51	$x^2 x^2 \pi \text{ of } C=N$
			0.51	π (Ligand)
				n (Elgund)
3	492	492	HOMO-1 \rightarrow LUMO (α)	π (Ligand) to $d_x^2 - y^2$
			0.54	π (Ligand), d_{xy} , d_{yz} , d_{xz} to d
			$HOMO \rightarrow LUMO+1$ (a)	
Experimental values		s Calcula	ted values 0.74 Intensity	Bandvassignments
	(cm^{-1})	(c	m^{-1}) HOMO $\rightarrow I$ (galeulated)	π (Ligand), d_{xy} , d_{yz} , d_{xz} to
3	449s. 3386s	3433	3. 3372 0.57 50.501	$-\frac{d_{x^2-y^2}}{v(NH_2)}$, π of C=N, π (Ligand)
4	1581m	400 1	$5640MO-2 \rightarrow LUMO_{12}(p) 0.37$	π (Ligand) to d_z^2 , d_x^2 -y ²
5	1609m	200 1	616 11010 4 111215,6420	-(1:x(N=C=0))
5	1227	390	$HOMO-4 \rightarrow LUMO+1 (\beta)$	π (Ligand) to, π (Ligand)
	133/m	1	0.85 400.636	V(C-0)
6	1028w	374 ¹	⁰¹³ HOMO-4 \rightarrow LUMO+2 (B)	π (Ligand) to d x^2 , π of
	469m	4	460 <u>61.883</u>	$C=N, \pi$ (Ligand)

Table S3 TDDFT calculations for UV-Vis transitions and their assignments.