Electronic supplementary information for the paper under the title:

Total Synthesis of (+)-Swainsonine and (+)-8-epi-Swainsonine

Milos Trajkovic, Vesna Balanac, Zorana Ferjancic* and Radomir N. Saicic*
Faculty of Chemistry, University of Belgrade, Studentski trg 16, P. O. B. 51, 11158
Belgrade 118, Serbia, Tel/fax: (+381) 113282 537, E-mail: rsaicic@chem.bg.ac.rs; zferjan@chem.bg.ac.rs

Contents

General experimental...S2
Benzyl allyl(benzyl)carbamate ..S2
Benzyl benzyl(2-oxoethyl)carbamate (8)...S2
Benzyl benzyl(2-(2,2-dimethyl-5-oxo-1,3-dioxan-4-yl)-2-hydroxyethyl)carbamate (6).......................S3
(4aS,7S,7aR)-Benzyl 7-hydroxy-2,2-dimethyltetrahydro-[1,3]dioxino[5,4-b]pyrrole-5(6H)-carboxylate (5)
(3aR,4S,6aS)-Benzyl 4-(hydroxymethyl)-2,2-dimethyldihydro-3a H-[1,3]dioxolo[4,5-c]pyrrole-5(4H)- carboxylate (4) S4
(3aR,4R,6aS)-Benzyl 4-formyl-2,2-dimethyldihydro-3a H-[1,3]dioxolo[4,5-c]pyrrole-5(4H)-carboxylate (3) S5
(3aR,4S,6aS)-Benzyl 4-((R)-1-hydroxy-4,4-dimethoxybutyl)-2,2-dimethyldihydro-3a H - [1,3]dioxolo[4,5-c]pyrrole-5(4H)-carboxylate (10) S6
(S)-1-((3aR,4S,6aS)-2,2-Dimethyltetrahydro-3a H-[1,3]dioxolo[4,5-c]pyrrol-4-yl)-4,4-dimethoxybutan- 1-ol (12) S6
(3aR,3bS,4S,8aS)-4-(3,3-Dimethoxypropyl)-2,2-dimethyltetrahydro-4H,6H- [1,3]dioxolo[4',5':3,4]pyrrolo[1,2-c]oxazol-6-one (11) S7
(+)-Swainsonine (1) S8
(+)-8-epi-Swainsonine (13) S8
($1 R, 1$ 'R,2S, $2 ' S, 5 R, 8 S, 8 a S, 8^{\prime} S, 8^{\prime} a S$)-1,1',2,2',3,3',5,6,7,7',8,8a, $8^{\prime}, 8^{\prime} a-T e t r a d e c a h y d r o-5,6^{\prime}$-biindolizine- 1,1',2,2',8,8'-hexaol (14) S9
(3R,4S)-1-Ethyl-2-((S)-5-hydroxytetrahydrofuran-2-yl)pyrrolidine-3,4-diol (15) S10
References S10
Spectra S11

General experimental

All chromatographic separations ${ }^{1}$ were performed on silica gel, $10-18$ mesh, $60 \AA$ (dryflash), 100-200 mesh, $60 \AA$ (column chromatography), ICN Biomedicals, and ion-exchange column chromatography (acidic resin DOWEX 50WX8-100). Standard techniques were used for the purification of the reagents and solvents. ${ }^{2}$ Petroleum ether refers to the fraction boiling at $70-$ $72{ }^{\circ} \mathrm{C}$. NMR spectra were recorded with a Bruker Avance III $500(1 \mathrm{H}$ NMR at $500 \mathrm{MHz}, 13 \mathrm{C}$ NMR at 125 MHz). Chemical shifts are expressed in ppm (δ) using tetramethylsilane as the internal standard. IR spectra were recorded with a Nicolet 6700 FT instrument. Mass spectra were obtained with an Agilent Technologies 6210 TOF LC- MS instrument (LC: series 1200) and LTQ Orbitrap XL hybrid FTMS (Thermo Scientific). Melting points were determined with a Kofler hot-stage and Electrothermal apparatus and are uncorrected, unless otherwise stated. Optical rotation was determined with a Rudolph Research Analytical AUTOPOL IV Automatic Polarimeter. Diffraction data were collected with an Oxford Diffraction KM4 four-circle goniometer equipped with a Sapphire CCD detector.

Benzyl allyl(benzyl)carbamate

Sodium hydride $(1.00 \mathrm{~g}, 41.67 \mathrm{mmol})$ was added in portions to a cold $\left(0^{\circ} \mathrm{C}\right)$ solution of benzyl allylcarbamate ($2.00 \mathrm{~g}, 10.46 \mathrm{mmol}$) in THF (10 mL), under an argon atmosphere. The reaction mixture was stirred for 30 min at $0^{\circ} \mathrm{C}$, then benzyl chloride ($3.85 \mathrm{~g}, 30.42 \mathrm{mmol}$) was added and the resulting suspension was stirred at rt for 15 h . The reaction mixture was quenched with water (10 mL), extracted with EtOAc and the combined organic extract was dried over anh. MgSO_{4} and concentrated under reduced pressure. Purification of the crude product by dry-flash chromatography $\left(\mathrm{SiO}_{2}\right.$; eluent: petroleum ether/EtOAc $\left.=9 / 1\right)$ afforded title compound $(2.00 \mathrm{~g}$; 68\%) as a colorless oil.
${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- $\left.d_{6}, 65^{\circ} \mathrm{C}\right) \delta 7.35-7.23(\mathrm{~m}, 10 \mathrm{H}), 5.81-5.73(\mathrm{~m}, 1 \mathrm{H}), 5.15(\mathrm{~s}, 2 \mathrm{H})$, 5.13-5.10 (m, 2H), $4.45(\mathrm{~s}, 2 \mathrm{H}), 3.86(\mathrm{~d}, J=5.8,2 \mathrm{H}){ }^{13} \mathrm{C}$ NMR (500 MHz, DMSO- $d_{6}, 65{ }^{\circ} \mathrm{C}$) δ $155.2(\mathrm{C}), 137.5(\mathrm{C}), 136.6(\mathrm{C}), 133.3(\mathrm{CH}), 128.0(\mathrm{CH}), 127.9(\mathrm{CH}), 127.4(\mathrm{CH}), 127.1(2 \mathrm{x}$ $\mathrm{CH}), 126.8(\mathrm{CH}), 116.4\left(\mathrm{CH}_{2}\right), 66.2\left(\mathrm{CH}_{2}\right), 49.3\left(\mathrm{CH}_{2}\right), 48.6\left(\mathrm{CH}_{2}\right)$; IR (ATR) v 3064, 3031, 1702, 1456, 1416, 1237, $699 \mathrm{~cm}^{-1}$; HRMS (m / z) calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 282.1489$, found: 282.1485 .

Benzyl benzyl(2-oxoethyl)carbamate (8) ${ }^{3}$

A cold $\left(-78{ }^{\circ} \mathrm{C}\right)$ solution of benzyl allyl(benzyl)carbamate ($3.00 \mathrm{~g}, 10.66 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ was treated with ozone until a blue color persisted. Excess ozone was purged from the reaction by bubbling argon through the cold reaction mixture for 15 min , followed by the addition of dimethyl sulfide ($22 \mathrm{~mL}, 299.53 \mathrm{mmol}$). The reaction mixture was stirred at rt overnight and concentrated under reduced pressure. The residue was dissolved in EtOAc, washed with water, dried over anh. MgSO_{4} and concentrated under reduced pressure. The crude product was purified by dry-flash chromatography $\left(\mathrm{SiO}_{2}\right.$; eluent: petroleum ether $\left./ \mathrm{EtOAc}=6 / 4\right)$, to give aldehyde $8(2.26 \mathrm{~g}, 75 \%)$ as a colorless oil.
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}, 65^{\circ} \mathrm{C}\right) \delta 9.45(\mathrm{~s}, 1 \mathrm{H}), 7.35-7.27(\mathrm{~m}, 10 \mathrm{H}), 5.14(\mathrm{~s}, 2 \mathrm{H}), 4.53(\mathrm{~s}$, 2 H), 4.08 ($\mathrm{s}, 2 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR (500 MHz, DMSO- $d_{6}, 65^{\circ} \mathrm{C}$) $\delta 198.5(\mathrm{CH}), 155.5$ (C), 137.2 (C), $136.3(\mathrm{C}), 128.1(\mathrm{CH}), 128.0(\mathrm{CH}), 127.5(\mathrm{CH}), 127.3(\mathrm{CH}), 127.1(\mathrm{CH}), 127.0(\mathrm{CH}), 66.5$ $\left(\mathrm{CH}_{2}\right), 56.4\left(\mathrm{CH}_{2}\right), 51.1\left(\mathrm{CH}_{2}\right)$; IR (ATR) v 3063, 3031, 2946, 2821, 1734, 1702, 1454, 1427, 1235, 1125, $699 \mathrm{~cm}^{-1} ;$ HRMS $(\mathrm{m} / \mathrm{z})$ calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 284.1281$, found: 284.1277.

Benzyl benzyl(2-(2,2-dimethyl-5-oxo-1,3-dioxan-4-yl)-2-hydroxyethyl)carbamate (6)

A solution of dioxanone $7(0.60 \mathrm{~g}, 4.61 \mathrm{mmol})$, aldehyde $8(0.66 \mathrm{~g}, 2.33 \mathrm{mmol})$ and (S) proline ($100.0 \mathrm{mg}, 0.87 \mathrm{mmol}$) in DMF $(10.6 \mathrm{~mL})$ was stirred overnight at rt . The reaction mixture was diluted with water and extracted with EtOAc. The combined organic extract was washed with water, dried over anh. MgSO_{4} and concentrated under reduced pressure. Purification of the crude product by two dry-flash chromatographies $\left(\mathrm{SiO}_{2} ; 1^{\text {st }}\right.$ eluent: toluene $/ \mathrm{EtOAc}=7 / 3 ; 2^{\text {nd }}$ eluent: petroleum ether/EtOAc $=7 / 3$) afforded aldol $6(640.0 \mathrm{mg}, 66 \%)$ as a pale yellow oil.
$[\alpha]_{\mathrm{D}}{ }^{25}-71.1\left(c 0.81, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, 65^{\circ} \mathrm{C}\right) \delta 7.33-7.30(\mathrm{~m}, 7 \mathrm{H}), 7.27-$ $7.24(\mathrm{~m}, 1 \mathrm{H}), 7.21-7.20(\mathrm{~m}, 2 \mathrm{H}), 5.12(\mathrm{~s}, 2 \mathrm{H}), 5.02(\mathrm{bs}, 1 \mathrm{H}, \mathrm{OH}), 4.59(\mathrm{~d}, J=15.9,1 \mathrm{H}), 4.49(\mathrm{~d}$, $J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.32(\mathrm{dd}, J=3.1,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.26-4.22(\mathrm{~m}, 2 \mathrm{H}), 3.95(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H})$, $3.40(\mathrm{dd}, J=14.3,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.34(\mathrm{dd}, J=14.3,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.40(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (500 MHz, DMSO- $\left.d_{6}, 6{ }^{\circ} \mathrm{C}\right) \delta 206.8(\mathrm{C}), 155.6(\mathrm{C}), 137.8(\mathrm{C}), 136.6(\mathrm{C}), 128.0(\mathrm{CH}), 127.9(\mathrm{CH})$, $127.3(\mathrm{CH}), 127.0(\mathrm{CH}), 126.8(\mathrm{CH}), 126.6(\mathrm{CH}), 99.6(\mathrm{C}), 77.0(\mathrm{CH}), 68.2(\mathrm{CH}), 66.4\left(\mathrm{CH}_{2}\right)$, $66.1\left(\mathrm{CH}_{2}\right), 50.6\left(\mathrm{CH}_{2}\right), 48.3\left(\mathrm{CH}_{2}\right), 24.4\left(\mathrm{CH}_{3}\right), 22.7\left(\mathrm{CH}_{3}\right)$; IR (ATR) v 3462, 3032, 2988, 2942, 1744, 1698, 1495, 1456, 1423, 1378, 1228, 1124, 1086, $736 \mathrm{~cm}^{-1}$; HRMS (m / z) calcd for $\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{KNO}_{6}[\mathrm{M}+\mathrm{K}]^{+}: 452.1470$, found: 452.1461 .
(4aS,7S,7aR)-Benzyl 7-hydroxy-2,2-dimethyltetrahydro-[1,3]dioxino[5,4-b]pyrrole-5(6H)carboxylate (5)

A suspension of aldol 8 ($44.4 \mathrm{mg}, 0.11 \mathrm{mmol}$) and $10 \% \mathrm{Pd} / \mathrm{C}(11.8 \mathrm{mg}, 0.01 \mathrm{mmol}$; Merck hydrogenation catalyst (oxidic form; cat. no. 8.0714.0010) for synthesis was used) in methanol (7.5 mL) was stirred for 2 h under a hydrogen atmosphere (4 bar). The reaction mixture was filtered and concentrated under reduced pressure. The crude product was dissolved in THF $(2.5 \mathrm{~mL})$, triethylamine ($36.3 \mathrm{mg}, 0.36 \mathrm{mmol}$) was added and the solution was cooled to $0{ }^{\circ} \mathrm{C}$. Benzyl chloroformate ($35.8 \mathrm{mg}, 0.21 \mathrm{mmol}$) was added dropwise, ice bath was removed and the mixture was stirred for 1 h at rt . The reaction mixture was diluted with EtOAc, washed with water, dried over anh. MgSO_{4} and concentrated under reduced pressure. The residue was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$; eluent: $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ methanol $\left.=98.5 / 1.5\right)$ to afford compound 5 $(23.3 \mathrm{mg}, 71 \%)$, as white crystals, and epi-5 ($1.9 \mathrm{mg}, 6 \%$), as colorless film. (For the results of the X-ray crystallographic analysis of 5 , see the CIF file in the Supporting information).
mp 98-99 ${ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{25} 94.4$ (c 1.03, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- $d_{6}, 65{ }^{\circ} \mathrm{C}$) δ 7.39-7.30 (m, 5H), $5.10(\mathrm{~d}, J=12.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.04(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.67(\mathrm{~d}, J=6.6,1 \mathrm{H}, \mathrm{OH}), 4.21(\mathrm{t}, J$ $=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.12-4.06(\mathrm{~m}, 1 \mathrm{H}), 3.96(\mathrm{dd}, J=12.2,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.71-3.66(\mathrm{~m}, 1 \mathrm{H}), 3.69(\mathrm{dd}, J$ $=9.5,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.20(\mathrm{t}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.39(\mathrm{~s}, 3 \mathrm{H}), 1.30(\mathrm{~s}, 3 \mathrm{H})$; The signal corresponding to one of the H atoms on the $\mathrm{C}-6$ atom was not observed under the recording conditions. ${ }^{13} \mathrm{C}$ NMR (500 MHz, DMSO- $\left.d_{6}, 65^{\circ} \mathrm{C}\right) \delta 154.1(\mathrm{C}), 136.6(\mathrm{C}), 128.0(\mathrm{CH}), 127.4(\mathrm{CH}), 127.2(\mathrm{CH})$, $97.1(\mathrm{C}), 69.2(2 \times \mathrm{CH}), 65.7\left(\mathrm{CH}_{2}\right), 58.6\left(\mathrm{CH}_{2}\right), 53.4(\mathrm{CH}), 49.6\left(\mathrm{CH}_{2}\right), 27.5\left(\mathrm{CH}_{3}\right), 19.9\left(\mathrm{CH}_{3}\right)$; IR (ATR) v 3440, 2991, 2942, 2888, 1702, 1420, 1358, 1234, 1139, $1083 \mathrm{~cm}^{-1} ; \operatorname{HRMS}(m / z)$ calcd for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{NO}_{5}[\mathrm{M}+\mathrm{H}]^{+}: 308.1492$, found: 308.1500 .
(3aR,4S,6aS)-Benzyl 4-(hydroxymethyl)-2,2-dimethyldihydro-3aH-[1,3]dioxolo[4,5-c]pyrrole-5(4H)-carboxylate (4)

To a solution of alcohol $5(200.0 \mathrm{mg}, 0.65 \mathrm{mmol})$ in acetone $(10.8 \mathrm{~mL}) ~ p \mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}$ $(12.8 \mathrm{mg}, 0.07 \mathrm{mmol})$ was added and the mixture was stirred at rt for 48 h . The reaction mixture was treated with triethylamine ($43.5 \mathrm{mg}, 0.43 \mathrm{mmol}$) and concentrated under reduced pressure. The residue was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$; eluent: $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ methanol $=$ $98.5 / 1.5)$, to afford compound $4(170.0 \mathrm{mg}, 85 \%)$ as a colorless oil. $[\alpha]_{\mathrm{D}}{ }^{25} 33.0\left(c 1.00, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, 6{ }^{\circ} \mathrm{C}\right) \delta 7.38-7.35(\mathrm{~m}, 4 \mathrm{H}), 7.34-$ $7.30(\mathrm{~m}, 1 \mathrm{H}), 5.10(\mathrm{~d}, J=12.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.07(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.79(\mathrm{t}, J=6.2,1 \mathrm{H}), 4.74(\mathrm{dt}$, $J=6.5,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.24-4.22(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OH}), 3.87-3.78(\mathrm{~m}, 2 \mathrm{H}), 3.71(\mathrm{dd}, J=12.1,6.6 \mathrm{~Hz}, 1 \mathrm{H})$, $3.66(\mathrm{dt}, J=10.5,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.33(\mathrm{dd}, J=12.1,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H}), 1.29(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (500 MHz, DMSO- $\left.d_{6}, 65^{\circ} \mathrm{C}\right) \delta 154.6(\mathrm{C}), 136.5(\mathrm{C}), 128.0(\mathrm{CH}), 127.4(\mathrm{CH}), 127.1(\mathrm{CH})$, $111.2(\mathrm{C}), 79.2(\mathrm{CH}), 76.7(\mathrm{CH}), 65.9\left(\mathrm{CH}_{2}\right), 61.3(\mathrm{CH}), 58.9\left(\mathrm{CH}_{2}\right), 51.2\left(\mathrm{CH}_{2}\right), 26.2\left(\mathrm{CH}_{3}\right)$, $24.7\left(\mathrm{CH}_{3}\right)$; $\operatorname{IR}(\mathrm{ATR}) v 3429,2986,2940,1699,1670,1418,1347,1245,1211,1085 \mathrm{~cm}^{-1}$; HRMS $(\mathrm{m} / \mathrm{z})$ calcd for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{NO}_{5}[\mathrm{M}+\mathrm{H}]^{+}: 308.1492$, found: 308.1477.

(3aR,4R,6aS)-Benzyl 4-formyl-2,2-dimethyldihydro-3aH-[1,3]dioxolo[4,5-c]pyrrole-5(4H)carboxylate (3)

Dess-Martin's periodinane ($100.0 \mathrm{mg}, 0.24 \mathrm{mmol}$) was added to a solution of alcohol 4 $(50.0 \mathrm{mg}, 0.16 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.3 \mathrm{~mL})$ and the reaction mixture was stirred at room temperature for 15 min . The reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, washed with 5% $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ and sat. aq. NaHCO_{3}, dried over anh. MgSO_{4} and concentrated under reduced pressure. The residue was purified by dry-flash chromatography $\left(\mathrm{SiO}_{2}\right.$; eluent: petroleum ether/EtOAc $=$ 6/4) to afford aldehyde $3(42.0 \mathrm{mg}, 85 \%)$ as a colorless oil.
$[\alpha]_{\mathrm{D}}{ }^{25} 66.5\left(c 1.23, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{DMSO}_{6} d_{6}, 6{ }^{\circ} \mathrm{C}\right) \delta 9.41(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.39-7.30(\mathrm{~m}, 5 \mathrm{H}), 5.10(\mathrm{~s}, 2 \mathrm{H}), 5.06(\mathrm{t}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.87(\mathrm{dt}, J=5.8,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.30-4.27$ $(\mathrm{m}, 1 \mathrm{H}), 3.69(\mathrm{dd}, J=12.2,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.59(\mathrm{dd}, J=12.2,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.37(\mathrm{~s}, 3 \mathrm{H}), 1.26(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, 6{ }^{\circ} \mathrm{C}$) $\delta 197.6(\mathrm{CH}), 154.5(\mathrm{C}), 136.1(\mathrm{C}), 128.0(\mathrm{CH})$, $127.5(\mathrm{CH}), 127.2(\mathrm{CH}), 111.7(\mathrm{C}), 80.0(\mathrm{CH}), 78.1(\mathrm{CH}), 66.8(\mathrm{CH}), 66.3\left(\mathrm{CH}_{2}\right), 51.3\left(\mathrm{CH}_{2}\right)$, $25.6\left(\mathrm{CH}_{3}\right), 24.1\left(\mathrm{CH}_{3}\right)$; IR(ATR) v 2988, 2942, 1737, 1705, 1414, 1349, 1212, 1125, 1088, 1001 cm^{-1}; HRMS $(\mathrm{m} / \mathrm{z})$ calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{NO}_{5}[\mathrm{M}+\mathrm{H}]^{+}: 306.1336$, found: 306.1326.
(3aR,4S,6aS)-Benzyl 4-((R)-1-hydroxy-4,4-dimethoxybutyl)-2,2-dimethyldihydro-3aH-[1,3]dioxolo[4,5-c]pyrrole-5(4H)-carboxylate (10)

To the suspension of Mg turnings ($203.5 \mathrm{mg}, 8.37 \mathrm{mmol}$) and a crystal of I_{2} in THF (3.5 mL), a solution of 3-bromo-1,1-dimethoxypropane ($0.95 \mathrm{~g}, 5.19 \mathrm{mmol}$) and 1 drop of 1,2dibromoethane in THF (3.5 mL) was added in small portions during 1 h , while keeping the temperature of the reaction mixture at $65{ }^{\circ} \mathrm{C}$. After the entire bromide was added, the reaction mixture was stirred at the same temperature for 30 minutes. The reaction mixture was cooled to rt and a solution of aldehyde 3 ($526.5 \mathrm{mg}, 1.72 \mathrm{mmol}$) in THF (3.5 mL) was added dropwise. After the reaction mixture was stirred for 15 min at rt , it was cooled to $0{ }^{\circ} \mathrm{C}$, quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with EtOAc. Organic extract was dried over anh. MgSO_{4} and concentrated under reduced pressure. The residue was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$; eluent: petroleum ether/EtOAc $\left.=1 / 1\right)$ to afford alcohol $10(611.4 \mathrm{mg}, 87 \%)$ as a colorless oil.
$[\alpha]_{\mathrm{D}}{ }^{25} 29.3$ (c 1.64, MeOH); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, 6{ }^{\circ} \mathrm{C}$) $\delta 7.37-7.30(\mathrm{~m}, 5 \mathrm{H}), 5.09$ (d, $J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.06(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.77-4.75(\mathrm{~m}, 1 \mathrm{H}), 4.72(\mathrm{dt}, J=6.8,4.5 \mathrm{~Hz}, 1 \mathrm{H})$, 4.41 (bd, $J=2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}), 4.31(\mathrm{t}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{dd}, J=12.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.82-3.80$ $(\mathrm{m}, 2 \mathrm{H}), 3.30(\mathrm{dd}, J=12.0,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.23(\mathrm{~s}, 3 \mathrm{H}), 3.22(\mathrm{~s}, 3 \mathrm{H}), 1.77-1.70(\mathrm{~m}, 1 \mathrm{H}), 1.67-1.60$ $(\mathrm{m}, 1 \mathrm{H}), 1.58-1.51(\mathrm{~m}, 1 \mathrm{H}), 1.46-1.39(\mathrm{~m}, 1 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H}), 1.28(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (500 MHz , DMSO- $\left.d_{6}, 65^{\circ} \mathrm{C}\right) \delta 154.8(\mathrm{C}), 136.6(\mathrm{C}), 128.0(\mathrm{CH}), 127.4(\mathrm{CH}), 127.1(\mathrm{CH}), 111.9(\mathrm{C}), 104.1$ $(\mathrm{CH}), 79.1(\mathrm{CH}), 76.9(\mathrm{CH}), 68.1(\mathrm{CH}), 65.9\left(\mathrm{CH}_{2}\right), 63.3(\mathrm{CH}), 52.2\left(\mathrm{CH}_{3}\right), 52.0\left(\mathrm{CH}_{3}\right), 50.6$ $\left(\mathrm{CH}_{2}\right), 28.8\left(\mathrm{CH}_{2}\right), 28.6\left(\mathrm{CH}_{2}\right), 26.1\left(\mathrm{CH}_{3}\right), 24.5\left(\mathrm{CH}_{3}\right)$; IR (ATR) v 3511, 3446, 3408, 3383, 2984, 2939, 2830, 1692, 1419, 1379, 1210, 1128, $1081 \mathrm{~cm}^{-1}$; HRMS (m / z) calcd for $\mathrm{C}_{21} \mathrm{H}_{31} \mathrm{NNaO}_{7}[\mathrm{M}+\mathrm{Na}]^{+}: 432.1993$, found: 432.1976.
(S)-1-((3aR,4S,6aS)-2,2-Dimethyltetrahydro-3aH-[1,3]dioxolo[4,5-c]pyrrol-4-yl)-4,4-dimethoxybutan-1-ol (12)

A solution of alcohol $10(0.21 \mathrm{~g}, 0.51 \mathrm{mmol}), \mathrm{PPh}_{3}(0.42 \mathrm{~g}, 1.60 \mathrm{mmol})$ and DEAD $(0.25$ $\mathrm{mL}, 0.28 \mathrm{~g}, 1.59 \mathrm{mmol})$ in THF (2.3 mL) was stirred over 20 h at rt . The reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, washed with water, dried over anh. MgSO_{4} and concentrated under reduced pressure. The crude product 11 was dissolved in $\mathrm{EtOH}(4 \mathrm{~mL})$, the solution of $\mathrm{LiOH} \cdot \mathrm{H}_{2} \mathrm{O}(0.44 \mathrm{~g}$, $10.48 \mathrm{mmol})$ in water (4 mL) was added and the mixture was stirred over 20 h at $90{ }^{\circ} \mathrm{C}$. The reaction mixture was diluted with CHCl_{3} and water, extracted with $\mathrm{CHCl}_{3}(3 \mathrm{x})$, dried over anh. MgSO_{4} and concentrated under reduced pressure. The crude product was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$; eluent $\left.\mathrm{PhH} / \mathrm{EtOH}=8 / 2\right)$ to afford compound $12(122.2 \mathrm{mg}, 87 \%)$ as a colorless oil.
$[\alpha]_{\mathrm{D}}{ }^{25} 41.1(c 1.01, \mathrm{MeOH}) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.75(\mathrm{dd}, J=5.5,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.69$ (dd, $J=5.5,4 \mathrm{~Hz}, 1 \mathrm{H}), 4.23(\mathrm{t}, J=5 \mathrm{~Hz}, 1 \mathrm{H}), 3.86-3.84(\mathrm{~m}, 1 \mathrm{H}), 3.34(\mathrm{~s}, 3 \mathrm{H}), 3.34(\mathrm{~s}, 3 \mathrm{H}), 3.15$ (d, $J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.67-2.59(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NH}, \mathrm{OH}), 2.65(\mathrm{dd}, J=13.5,4 \mathrm{~Hz}, 1 \mathrm{H}), 2.60(\mathrm{t}, J=4.5$ $\mathrm{Hz}, 1 \mathrm{H}), 1.95-1.90(\mathrm{~m}, 1 \mathrm{H}), 1.76-1.71(\mathrm{~m}, 3 \mathrm{H}), 1.47(\mathrm{~s}, 3 \mathrm{H}), 1.31(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 110.9(\mathrm{C}), 104.5(\mathrm{CH}), 82.2(\mathrm{CH}), 82.1(\mathrm{CH}), 71.1(\mathrm{CH}), 66.7(\mathrm{CH}), 53.0\left(\mathrm{CH}_{3}\right), 52.8$ $\left(\mathrm{CH}_{2}\right), 52.5\left(\mathrm{CH}_{3}\right), 30.5\left(\mathrm{CH}_{2}\right), 29.2\left(\mathrm{CH}_{2}\right), 25.6\left(\mathrm{CH}_{3}\right), 23.5\left(\mathrm{CH}_{3}\right)$; IR (ATR) v 3509, 2983, 2934, 2831, 1378, 1207, 1126, $1061 \mathrm{~cm}^{-1}$; HRMS $(\mathrm{m} / \mathrm{z})$ calcd for $\mathrm{C}_{13} \mathrm{H}_{26} \mathrm{NO}_{5}[\mathrm{M}+\mathrm{H}]^{+}: 276.1805$, found: 276.1807.
(3aR,3bS,4S,8aS)-4-(3,3-Dimethoxypropyl)-2,2-dimethyltetrahydro-4H,6H-[1,3]dioxolo[4',5':3,4]pyrrolo[1,2-c]oxazol-6-one (11)

10

To a solution of $\mathbf{1 0}(35.1 \mathrm{mg}, 0.09 \mathrm{mmol})$ in CHCl_{3}, triethylamine ($18.9 \mathrm{mg}, 0.19 \mathrm{mmol}$) and $\mathrm{MsCl}(14.8 \mathrm{mg}, 0.13 \mathrm{mmol})$ were added and the reaction mixture was stirred for 15 min at rt and additional 20 h at $60^{\circ} \mathrm{C}$. The reaction mixture was diluted with EtOAc, washed with water, dried over anh. MgSO_{4} and concentrated under reduced pressure. The crude product was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$; eluent: $\left.\mathrm{PhH} / \mathrm{EtOH}=95 / 5\right)$ to afford compound $\mathbf{1 1}(13.6 \mathrm{mg}$, 53%) as white crystals.
m p $72-73{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{25} 26.9$ (c $1.02, \mathrm{MeOH}$); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.78$ (dt, $J=5.5,1.5$ $\mathrm{Hz}, 1 \mathrm{H}), 4.72-4.68(\mathrm{~m}, 1 \mathrm{H}), 4.62(\mathrm{dd}, J=5.5,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{t}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{dd}, J=$ $13.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{dd}, J=7.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.36(\mathrm{~s}, 3 \mathrm{H}), 3.35(\mathrm{~s}, 3 \mathrm{H}), 3.12(\mathrm{dd}, J=13.0$, $5.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.31-2.24(\mathrm{~m}, 1 \mathrm{H}), 2.00-1.93(\mathrm{~m}, 1 \mathrm{H}), 1.91-1.84(\mathrm{~m}, 1 \mathrm{H}), 1.76-1.69(\mathrm{~m}, 1 \mathrm{H}), 1.45$ $(\mathrm{s}, 3 \mathrm{H}), 1.28(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 161.2(\mathrm{C}), 112.9(\mathrm{C}), 104.1(\mathrm{CH}), 81.9$ $(\mathrm{CH}), 79.8(\mathrm{CH}), 76.1(\mathrm{CH}), 65.3(\mathrm{CH}), 53.2\left(\mathrm{CH}_{3}\right), 53.0\left(\mathrm{CH}_{3}\right), 52.3\left(\mathrm{CH}_{2}\right), 29.4\left(\mathrm{CH}_{2}\right), 26.5$
$\left(\mathrm{CH}_{3}\right), 24.4\left(\mathrm{CH}_{3}\right), 24.1\left(\mathrm{CH}_{2}\right)$; IR (ATR) v 2986, 2941, 1753, 1384, 1213, 1128, 1100, 1047 $\mathrm{cm}^{-1} ;$ HRMS (m / z) calcd for $\mathrm{C}_{14} \mathrm{H}_{23} \mathrm{NNaO}_{6}[\mathrm{M}+\mathrm{Na}]^{+}: 324.1418$, found: 324.1397.

(+)-Swainsonine (1)

A suspension of $12(43.9 \mathrm{mg}, 0.16 \mathrm{mmol})$ and $10 \% \mathrm{Pd} / \mathrm{C}(22.5 \mathrm{mg}, 0.02 \mathrm{mmol})$ in ethanol $(8.6 \mathrm{~mL})$ was stirred under hydrogen atmosphere (4 bar) for 2 minutes, $2 \mathrm{M} \mathrm{HCl}(3.7 \mathrm{~mL})$ was added and stirring was continued under hydrogen atmosphere (4 bar) for 5 h at rt. The reaction mixture was filtered through celite, concentrated under reduced pressure and purified by ion exchange column chromatography (acidic resin DOWEX 50WX8-100), to give compound 1 $(26.0 \mathrm{mg}, 94 \%)$ as a white solid. mp 142-144 ${ }^{\circ} \mathrm{C}\left(\mathrm{Lit}^{4,5} 143-145{ }^{\circ} \mathrm{C}\right) ;[\alpha]_{\mathrm{D}}{ }^{25} 84.5(c 0.49, \mathrm{MeOH})\left(\mathrm{Lit}^{4}{ }^{4}\right.$ for the enantiomer $[\alpha]_{\mathrm{D}}{ }^{25}$ -87.2 (c 2.1, MeOH), (Lit. ${ }^{5}[\alpha]_{\mathrm{D}}{ }^{25} 83.3(c 0.5, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta 4.38$ (ddd, J $=8.0,6.0,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.29(\mathrm{dd}, J=6.0,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{ddd}, J=11.1,9.5,4.7 \mathrm{~Hz}, 1 \mathrm{H})$, 2.95-2.93 (m, 1H), 2.92 (dd, $J=11.0,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.59(\mathrm{dd}, J=11.0,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.09$ (ddd, $J=$ $3.5,11.5,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.02-1.94(\mathrm{~m}, 2 \mathrm{H}), 1.78-1.72(\mathrm{~m}, 1 \mathrm{H}), 1.55(\mathrm{qt}, J=13.5,4.0 \mathrm{~Hz}, 1 \mathrm{H})$, 1.31-1.23 (m, 1H); ${ }^{13} \mathrm{C}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta 72.3(\mathrm{CH}) 69.2(\mathrm{CH}), 68.6(\mathrm{CH}), 65.9(\mathrm{CH})$, $60.1\left(\mathrm{CH}_{2}\right), 51.2\left(\mathrm{CH}_{2}\right), 32.0\left(\mathrm{CH}_{2}\right), 22.7\left(\mathrm{CH}_{2}\right)$; IR (ATR) v 3367, 2942, 2884, 2803, 2726, 1346, 1321, 1150, 1127, 1074, $1027 \mathrm{~cm}^{-1}$; HRMS (m / z) calcd for $\mathrm{C}_{8} \mathrm{H}_{16} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 174.1125$ found: 174.1126 .
*Additional purification of $\mathbf{1}$ by sublimation $\left(0.2 \mathrm{~mm} \mathrm{Hg}, 108-120^{\circ} \mathrm{C}\right)$ gave sample of $\mathbf{1}$ (77\%) as white powder, $\mathrm{mp} 143-145{ }^{\circ} \mathrm{C}\left([\alpha]_{\mathrm{D}}{ }^{25} 84.4\right)$.

(+)-8-epi-Swainsonine (13)

A suspension of $10(38.9 \mathrm{mg}, 0.10 \mathrm{mmol})$ and $10 \% \mathrm{Pd} / \mathrm{C}(19.5 \mathrm{mg}, 0.018 \mathrm{mmol})$ in ethanol (8.0 mL) was stirred under a hydrogen atmosphere (4 bar) for 2 minutes, $2 \mathrm{M} \mathrm{HCl}(3.5$ mL) was added and stirring was continued under hydrogen atmosphere (4 bar) for 6 h at rt . The reaction mixture was filtered through celite, concentrated under reduced pressure and purified by
ion exchange column chromatography (acidic resin DOWEX 50WX8-100), to give the title compound 13 ($15.5 \mathrm{mg}, 94 \%$) as a white solid.
$\mathrm{mp} 91-94{ }^{\circ} \mathrm{C}\left(\mathrm{Lit} .{ }^{6} \mathrm{mp} 93-95{ }^{\circ} \mathrm{C}\right) ;[\alpha]_{\mathrm{D}}{ }^{25} 22.9(c 0.50, \mathrm{MeOH})$, (Lit. ${ }^{6}$ for the enantiomer $[\alpha]_{\mathrm{D}}{ }^{21}-$ $24.8(c 0.67, \mathrm{MeOH})$); ${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 4.28-4.26(\mathrm{~m}, 2 \mathrm{H}), 4.17(\mathrm{dt}, J=6.9,1.8$ $\mathrm{Hz}, 1 \mathrm{H}), 3.06-3.04(\mathrm{~m}, 1 \mathrm{H}), 2.94(\mathrm{dd}, J=10.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.30(\mathrm{dd}, J=10.5,6.9 \mathrm{~Hz}, 1 \mathrm{H})$, 2.04-1.95 (m, 3H), 1.84-1.80 (m, 1H), 1.49-1.39 (m, 2H); ${ }^{13} \mathrm{C}^{\mathrm{NMR}}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 74.4$ (CH) $70.0(\mathrm{CH}), 69.5(\mathrm{CH}), 67.5(\mathrm{CH}), 63.1\left(\mathrm{CH}_{2}\right), 54.4\left(\mathrm{CH}_{2}\right), 32.1\left(\mathrm{CH}_{2}\right), 20.8\left(\mathrm{CH}_{2}\right)$; IR (ATR) v 3355, 2938, 2854, 2792, 1442, 1146, $1012 \mathrm{~cm}^{-1}$; HRMS (m / z) calcd for $\mathrm{C}_{8} \mathrm{H}_{16} \mathrm{NO}_{3}$ $[\mathrm{M}+\mathrm{H}]^{+}: 174.1125$, found: 174.1127 .
*Additional purification of $\mathbf{1 3}$ by sublimation $\left(0.2 \mathrm{~mm} \mathrm{Hg}, 40-65^{\circ} \mathrm{C}\right)$ gave sample of $\mathbf{1 3}$ (79%) as white powder, $\mathrm{mp} 93-94{ }^{\circ} \mathrm{C}\left([\alpha]_{\mathrm{D}}{ }^{25} 24.7(c 0.87, \mathrm{MeOH})\right.$).

(1R,1'R,2S,2'S,5R,8S,8aS,8'S,8'aS)-1,1',2,2',3,3',5,6,7,7',8,8a,8',8'a-Tetradecahydro-5,6'-biindolizine-1,1',2,2',8,8'-hexaol (14) ${ }^{7}$

To a solution of $12(23.0 \mathrm{mg}, 0.09 \mathrm{mmol})$ in THF $(1.2 \mathrm{~mL}) 2 \mathrm{M} \mathrm{HCl}(1.2 \mathrm{~mL})$ was added and the mixture was stirred for 1 h at rt . The reaction mixture was concentrated in vacuo and the residue was purified by ion exchange column chromatography (acidic resin DOWEX 50WX8100) to give compound 14 ($9.1 \mathrm{mg}, 64 \%$), as a yellow oil. ${ }^{7}$
${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 5.99(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.22-4.18(\mathrm{~m}, 2 \mathrm{H}), 4.17-4.14(\mathrm{~m}, 2 \mathrm{H})$, $3.96(\mathrm{dt}, J=10.0,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{ddd}, J=11.2,9.7,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.35-3.34(\mathrm{~m}, 1 \mathrm{H}), 3.06(\mathrm{dd}$, $J=9.7,3.7,1 \mathrm{H}), 3.00(\mathrm{t}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.89(\mathrm{dd}, J=11.0,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.38-2.29(\mathrm{~m}, 3 \mathrm{H})$, $2.06-2.01(\mathrm{~m}, 1 \mathrm{H}), 1.94(\mathrm{ddd}, J=15.4,10.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.81(\mathrm{dd}, J=9.0,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.71-$ $1.62(\mathrm{~m}, 1 \mathrm{H}), 1.47-1.44(\mathrm{~m}, 1 \mathrm{H}), 1.32(\mathrm{ddd}, J=24.8,13.0,4.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (500 MHz , $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 131.3(\mathrm{CH}), 101.2(\mathrm{C}), 75.6(\mathrm{CH}), 72.4(\mathrm{CH}), 72.3(\mathrm{CH}), 71.7(\mathrm{CH}), 69.8(\mathrm{CH}), 69.6$ $(\mathrm{CH}), 67.1(\mathrm{CH}), 66.3(\mathrm{CH}), 64.3(\mathrm{CH}), 61.7\left(\mathrm{CH}_{2}\right), 54.8\left(\mathrm{CH}_{2}\right), 34.8\left(\mathrm{CH}_{2}\right), 32.0\left(\mathrm{CH}_{2}\right), 31.3$ $\left(\mathrm{CH}_{2}\right)$.

(3R,4S)-1-Ethyl-2-((S)-5-hydroxytetrahydrofuran-2-yl)pyrrolidine-3,4-diol (15)

To a solution of $\mathbf{1 0}(21.1 \mathrm{mg}, 0.05 \mathrm{mmol})$ in THF $(1.2 \mathrm{~mL}), 1 \mathrm{M} \mathrm{HCl}(1.2 \mathrm{~mL})$ was added and the reaction mixture was stirred for 3 h at rt . The reaction mixture was diluted with EtOAc, washed with sat. aq. NaHCO_{3}, dried over anh. MgSO_{4} and concentrated under reduced pressure. The crude product was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$; eluent: petroleum ether/ ethyl acetate $=1 / 4)$ to afford hemiacetal ($13.9 \mathrm{mg}, 83 \%$) as colorless oil. A suspension of hemiacetal and $10 \% \mathrm{Pd} / \mathrm{C}(5.5 \mathrm{mg}, 0.005 \mathrm{mmol})$ in $\mathrm{EtOH}(2.2 \mathrm{~mL})$ was stirred under a hydrogen atmosphere (4 bar) over 30 h at rt . The reaction mixture was filtered and concentrated under reduced pressure. The crude product was purified by ion exchange column chromatography (acidic resin DOWEX 50WX8-100) to give compound $15(3.5 \mathrm{mg}, 37 \%)$ as a pale-yellow oil. $[\alpha]_{\mathrm{D}}{ }^{25} 35.7\left(c 0.61, \mathrm{H}_{2} \mathrm{O}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta 5.58(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.54-4.53(\mathrm{~m}$, $1 \mathrm{H}), 4.37-4.31(\mathrm{~m}, 2 \mathrm{H}), 3.12(\mathrm{dd}, J=11.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.95$ (dd, $J=11.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.88-$ $2.81(\mathrm{~m}, 1 \mathrm{H}), 2.66(\mathrm{bs}, 1 \mathrm{H}), 2.62-2.55(\mathrm{~m}, 1 \mathrm{H}), 2.22-2.17(\mathrm{~m}, 1 \mathrm{H}), 2.13-2.02(\mathrm{~m}, 2 \mathrm{H}), 1.94-1.89$ $(\mathrm{m}, 1 \mathrm{H}), 1.10(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta 102.0(\mathrm{CH}), 78.0(\mathrm{CH}), 72.9$ $(\mathrm{CH}), 72.1(\mathrm{CH}), 68.0(\mathrm{CH}), 59.2\left(\mathrm{CH}_{2}\right), 52.1\left(\mathrm{CH}_{2}\right), 31.1\left(\mathrm{CH}_{2}\right), 27.9\left(\mathrm{CH}_{2}\right), 14.5\left(\mathrm{CH}_{3}\right)$; IR (ATR) v3429, 2966, 2802, 1465, 1347, 1294, 1221, 1170, 1135, 1055, 991, $953 \mathrm{~cm}^{-1}$; HRMS $(\mathrm{m} / \mathrm{z})$ calcd for $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{NO}_{3}\left[\mathrm{M}+\mathrm{H}-\mathrm{H}_{2} \mathrm{O}\right]^{+}: 200.1281$, found 200.1278.

References

[^0]
Scanned spectra

500 MHz , DMSO, 338K

N

$\begin{aligned} & \stackrel{a}{\circ} \\ & \stackrel{\circ}{\circ} \end{aligned}$	$\stackrel{\text { ¢ }}{\text { ¢ }}$	
¡	i	\1\%

500 MHz , DMSO, 338K

1	1	T	T		1	1	1	T			1	I	1	1	1	1	1	1	1	
200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

	T	1	1				T	,	,	1			1	1	1	1	T		
200	190	180	170	160	150	140	130	120	110	$\begin{aligned} & 100 \\ & \mathrm{f} 1(\mathrm{ppm}) \end{aligned}$	90	80	70	60	50	40	30	20	10

1	1	1	1	1	1	1	1	1	,	1	1	1	1	1	1	1	1	1	1	T
200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0
		180				140				f1 (ppm)										

1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10
										f1 (ppm)									

[^0]: ${ }^{1}$ For description of the technique of dry-flash chromatography, see: (a) L. M. Harwood, Aldrichimica Acta 1985, 18, 25. (b) Vogel's Textbook of Practical Organic Chemistry, Longman Scientific\&Technical, $5^{\text {th }}$ edition, London, 1989, p. 220. (c) A recent account which includes some improvements of the separation technique: D. S. Pedersen, C. Rosenbohm, Synthesis 2001, 2431.
 ${ }^{2}$ D. D. Perrin, W. L. F. Armarego, Purification of Laboratory Chemicals, $3{ }^{\text {rd }}$ edition, Pergamon Press, 1988.
 ${ }^{3}$ D. C. Beshore, C. J. Dinsmore, Org. Lett. 2002, 4, 1201.
 ${ }^{4}$ M. J. Schneider, F. S. Ungemach, H. P. Broquist, T. M. Harris, Tetrahedron 1983, 39, 29.
 ${ }^{5}$ T. Oishi, T. Iwakuma, M. Hirama, S. Ito, Synlett 1995, 404.
 ${ }^{6}$ K. Tadano, Y. Limura, Y. Hotta, C. Fukabori, T. Soumi, Bull. Chem. Soc. Jpn. 1986, 59, 3885.
 ${ }^{7}$ T. Fujita, H. Nagasawa, Y. Uto, T. Hashimoto, Y. Asakawa, H. Hori, Org. Lett. 2004, 6, 827.

