Lamellae evolution of poly(butylene succinate-co-terephthalate) copolymer induced by uniaxial stretching and subsequent heating

Zhenzhen Wei, ${ }^{a, b}$ RuiXin Lun, ${ }^{a, b}$ Xueqin Lou, ${ }^{a, b}$ Feng Tian, ${ }^{c}$ Jinyou Lin, ${ }^{* c}$ Xiuhong Li, ${ }^{c}$ Jianyong Yu ${ }^{d}$ and Faxue Li ${ }^{*}{ }^{\text {ab } b}$

*Corresponding author. Tel:+86-21-67792803; Fax: +86-21-67792627
E-mail address: J. Y. Lin (jinyoulin82@gmail.com);F. X. Li (fxlee@dhu.edu.cn)

Figure S1.(a)Differential scanning calorimeter (DSC) curves of PBST copolymer. About 7 mg sample sealed in an aluminum pan was heated to $210^{\circ} \mathrm{C}$ at a rate of $20^{\circ} \mathrm{C} / \mathrm{min}$ (the first heating) and kept for 3 min before cooling at a rate of $10^{\circ} \mathrm{C} / \mathrm{min}$ to $50^{\circ} \mathrm{C}$ under N_{2} atmosphere. Subsequently, the sample was reheated up to $210^{\circ} \mathrm{C}$ at a rate of $20^{\circ} \mathrm{C} / \mathrm{min}$ (the second heating). Temperature corresponding to the peak in the second heating cycle was defined as the melting point. (b) Dynamic mechanical analysis (DMA) was performed on TA Q800 dynamic mechanical analyser. The tests were carried out in tensile mode over a temperature range from -50 to $90^{\circ} \mathrm{C}$ at a frequency of 1 Hz and heating rate of $5^{\circ} \mathrm{C} / \mathrm{min}$. Temperature corresponding to the peak in tan δ curve was defined as glass transition temperature.

Figure S2.The stress relaxation curve of PBST copolymer during the heating process as a function of time.

(a)

(b)

Figure S3.(a) Peak fitting of XRD curve of PBST copolymer using the software of
JADE 5.0 and (b) corresponding result of crystallinity calculated using
the equation $X_{\mathrm{c}}=$ area of crystals peak / total area. The left tick in (b) is
the fitted amorphous peak.

