Electronic Supplementary Information

Fluid interface-mediated nanoparticle membrane as electrochemical sensor

Mohammed Ali, Koushik Barman, Sk. Jasimuddin and Sujit Kumar Ghosh*

Department of Chemistry, Assam University, Silchar-788011, India E-mail: sujit.kumar.ghosh@aus.ac.in

ESI 1. Modification of the gold electrode with nanoparticle-decorated membrane Modification of gold electrode surface

The bare gold electrode was polished with 0.05 μ m alumina powder and then, thoroughly, rinsed with distilled water. This, mechanically, cleaned gold electrode was, again, uncontaminated by repetitive cycling between potential -0.2 to +1.5 V *vs.* Ag/AgCl in 1.0 M H₂SO₄ solution until a stable characteristic cyclic voltammogram was obtained. The electrode was, then, rinsed with distilled water and clamped in such a manner that the gold surface is in contact with the Fe₃O₄ nanoparticle-decorated membrane formed at the water/chloroform interface. After 20 h keeping the solution undisturbed for overnight, the membrane modified gold electrode was formed and washed, thoroughly, with distilled water for further use.

Electrochemical characterisation of membrane-modified electrode

The characterisation of membrane-modified gold electrode was conducted using the redox probe $[Fe(CN)_6]^{3-/4-}$ as shown in Fig. SI 1. Panel a shows the cyclic voltammogram of the bare electrode (black curve) and membrane-modified electrode (red curve) in 1.0 mM $[Fe(CN)_6]^{3-/4-}$ in PBS at pH 7.0. For a bare gold electrode, the signature of a well-defined redox couple of $[Fe(CN)_6]^{3-/4-}$ was appeared with a peak-to-peak separation, $\Delta E_p = 74$ mV. However, after modification with membrane, the peak current increased and peak-to-peak separation decreased, $(\Delta E_p = 63 \text{ mV})$ indicating successful modification of the electrode with the membrane.

The Nyquist plot presented in panel b shows that after modification of the gold electrode, the charge transfer resistance (R_{CT}) decreased compared to bare gold electrode [R_{CT} (bare): 19056 Ω and R_{CT} (modified): 11004 Ω] which is due to monolayer formation over gold electrode surface. The surface coverage $\theta = 0.73$, was obtained using, $\theta = [1 - (R_{ct}^0 / R_{ct})]$, where, R_{ct}^0 and R_{ct} are the charge transfer resistances of the redox probe at bare and membrane-modified gold electrodes, respectively, under similar conditions.

Fig. SI 1. (a) Cyclic voltammogram and (b) electrochemical impedance spectroscopy of 1.0 mM $K_4[Fe(CN)_6]$ at bare (black curve) and Fe_3O_4 membrane-modified electrode (red curve) at pH=7.0.

ESI 2. Electrocatalytic oxidation of L-Dopa at different pH

L-Dopa has been detected by membrane-modified electrode at different pH to investigate the effect of pH on sensing (Fig. SI 2). At pH 7.0, the interaction between membrane-modified gold electrode and L-Dopa (exists as negatively charged at this pH) is maximum as shown by the profile showing the variation of peak current as a function of pH. Below or above pH 7.0, the interaction is less because L-Dopa exists in zwitterionic form at pH 5.0 (isoelectric point, pI = 5.2) and doubly negatively charged at pH >>7.0. Therefore, it is evident that, the electrostatic interaction between L-Dopa and membrane-modified electrode surface is less as apparent from the low anodic current height in the cyclic voltammogram.

Fig. SI 2. (a) Schematic presentation of L-Dopa and its interaction with membrane-modified gold electrode (b) cyclic voltammogram of L-Dopa at membrane modified gold electrode at different pH. [pH= 5.0 (violet); 6.0 (green); 7.0 (black); 8.0 (pink); 9.0 (blue); 10.0 (red)] (c) plot of pH *vs.* peak current of L-Dopa at membrane-modified gold electrode.

ESI 3. Sensing capabilities of different materials and methods for L-Dopa determination

Table SI 1. Comparative account of the sensing capabilities for the determination of L-Dopa in

 the presence of different materials and methods

Materials	Method	Concentration	LOD	Reference				
		range (μM)	(μM)					
Oxovanadium-	flow injection method	1-100	0.80	Teixeira et al. [Ref. 11]				
salen complex								
Phenylboronic	fluorescence spectroscop	oy 0-5000	_	Coskun et al. [Ref. 12]				
acid derivative of								
lucifer yellow								
Chloro(pyridine)	cyclic voltammetry	3-100	0.86	Leite et al. [Ref. 13]				
bis(dimethylglyoximato)								
cobalt(III)/multi-wal	led							
carbon nanotube								

Cobalt hexacyanoferrate/	cyclic voltammetry	0.1-1900	0.02	Yan et al. [Ref. 14]			
large mesopore carbon							
composite modified electrode							
Fe ₃ O ₄ membrane	cyclic voltammetry	0.05-10	0.01	Present work			

ESI 4. Simultaneous determination of L-Dopa and ascorbic acid in binary mixtures

Simultaneous detection of L-Dopa and ascorbic acid (AA) in binary mixtures was studied at membrane-modified gold electrode. Fig. SI 3 shows the overlaid differential pulse voltametry obtained for a L-Dopa and AA mixture at membrane-modified electrode in PBS (pH = 7.0) by changing the concentration of both L-Dopa and AA (1, 2, 3, 4, 5, 6 uM). The oxidation peaks of L-Dopa (0.38 V) and AA (0.24 V) with a peak separation of 140 mV was observed with increasing the concentration of both compounds. The regression equation for L-Dopa and AA was found to be, I_p (μ A) = 0.2217 C (μ M) + 6.1231 and I_p (μ A) = 0.2254 C (μ M) + 1.8549, respectively in the range of (1- 6 μ M). The current responses of both L-Dopa and AA, linearly, increase with a correlation coefficient of 0.998 and 0.999, respectively. Therefore, it could be inferred that, the nanoparticle-decorated membrane could be employed as an electrochemical sensor for simultaneous determination of L-Dopa and ascorbic acid in a binary mixture of the compounds.

Fig. SI 3. (a) Differential pulse voltametry of L-Dopa in different concentrations: (a) 1.0, (b) 1.5, (c) 2.0, (d) 2.5, (e) 3.0, (f) 3.5, (g) 4.0 and (h) 4.5 μ M; and (b) overlaid differential pulse voltametry of L-Dopa and ascorbic acid in different concentrations. Inset shows the plots of current (μ A) *vs.* concentration (μ M) of L-Dopa and ascorbic acid.