## Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2014

Electronic Supplementary Material (ESI) for RSC Advances This journal is © The Royal Society of Chemistry 2014

## Supporting information

## Metal-elastomer nanostructures for tunable SERS and easy microfluidic integration

Andrea Lamberti,<sup>a</sup> Alessandro Virga,<sup>a</sup> Angelo Angelini,<sup>a</sup> Alessandro Ricci,<sup>b</sup> Emiliano Descrovi,<sup>a</sup> Matteo Cocuzza,<sup>a,b,c</sup> and Fabrizio Giorgis<sup>\*a,b</sup>



**Figure S1.** 3D schematic of the fabrication process: (a) PMMA master fabrication by milling, (b) replication by PDMS casting, curing and removal, (c) Ag NPs sputtering into the microchannel by hard masking, (d) cross-section of the microfluidic cover bonded with a planar PDMS slab by stamp and stick method.



**Figure S2.** (a) Scheme of a typical Ag-coated PDMS membrane subjected to external strain. (b) Customized tensile strain device clamping the metal-elastomeric membrane.

Corresponding author: fabrizio.giorgis@polito.it

Electronic Supplementary Material (ESI) for RSC Advances This journal is © The Royal Society of Chemistry 2014



**Figure S3.** FESEM micrographs of Ag nanoparticles obtained by d.c. sputtering at 20 mA (a) and 40 mA (b) on c-Si. Distributions of nanoparticles size and gaps between neighboring particles are also shown.

Electronic Supplementary Material (ESI) for RSC Advances This journal is © The Royal Society of Chemistry 2014



**Figure S4.** Transmittance spectra of representative silvered PDMS membranes under a cycle of external strain ( $0\% \rightarrow 50\% \rightarrow 0\%$ ). The samples do not evidence any hysteresis behavior. The spectra are vertically shifted for clarity.



**Figure S5.** Raman spectra of R6G in ethanolic solution at a concentration of  $10^{-8}$  M and  $10^{-10}$  M adsorbed on samples #1, #2, #3. It is straightforward to notice as the Raman detection threshold increases as the plasmon resonance of the metal-elastomeric nanostructure (reflectance dip) moves away from the laser excitation wavelength.

Corresponding author: fabrizio.giorgis@polito.it



**Figure S6.** Raman spectra of R6G at a concentration of  $10^{-8}$  M injected in the microfluidic device: (a) excitation at 514.5 nm on unstretched chip, (b) excitation at 514.5 nm on stretched chip (50% strain).