Electronic Supplementary Information (ESI)

DPP-based small molecule, non-fullerene acceptors for "channel II" charge generation in OPVs and their improved performance in ternary cells

Y. Kim,^{*a*} C. E. Song,^{*b*} E.-J. Ko,^{*a*} D. Kim,^{*a*} S.-J. Moon^{*b*} and E. Lim^{**a*}

^a Department of Chemistry, Kyonggi University, San 94-6, Iui-dong, Yeongtong-gu, Suwon-si, Gyeonggi 443-760, Republic of Korea

^b Korea Research Institute of Chemical Technology (KRICT), 100 Jang-dong, Yuseong-gu, Daejeon 305-600, Republic of Korea

E-mail: ehlim@kyonggi.ac.kr

Contents

1. ¹ H and ¹³ C NMR spectra	S3
2. Normalized UV absorption spectra	S6
3. OPV characteristics	\$7
4. Atomic force microscopy (AFM) images	S9

List of Table

Table	S 1	-	Photovoltaic	performances	with	various	blend	ratios	and	annealing
temperatures										

List of Figures

Figure S1 – ¹ H NMR spectra of p -DPP-PhCN	S3
Figure S2 – ¹³ C NMR spectra of <i>p</i> -DPP-PhCN	S3
Figure S3 – ¹ H NMR spectra of <i>m</i> -DPP-PhCN	S4
Figure S4 $-$ ¹³ C NMR spectra of <i>m</i> -DPP-PhCN	S4
Figure S5 – ¹ H NMR spectra of <i>o</i> -DPP-PhCN	S5
Figure S6 – ¹³ C NMR spectra of <i>o</i> -DPP-PhCN	S5
Figure S7 – Normalized UV absorption spectra of DPP-PhCN acceptors	S6
Figure S8 – $J-V$ curves of OPV devices using chloroform as a solvent with variou	is blend
ratios and annealing temperatures	S8
Figure S9. AFM images ($10 \times 10 \ \mu m$) of the (a) Device I (P3HT: <i>p</i>-DPP-PhCN = 1:1	1, rms =
4.97 nm), (b) Device II (P3HT: <i>o</i> -DPP-PhCN: <i>p</i> -DPP-PhCN = 1:0.25:0.75, rms = 11.	.49 nm),
(c) Device III (P3HT: <i>o</i> - DPP-PhCN : <i>p</i> - DPP-PhCN = 1:0.5:0.5, rms = 8.20 nm), (d)	Device
IV (P3HT: o - DPP-PhCN : p - DPP-PhCN = 1:0.75:0.25, rms = 2.95 nm), (e) De	evice V
(P3HT: o - DPP-PhCN = 1:1, rms = 4.71 nm), and (f) P3HT: o - DPP-PhCN : p - DPP-I	PhCN =
1:0.25:0.75 (rms = 6.26 nm). The films were annealed at 120 °C (a–e) or 90 °C (f)	S9

1. ¹H and ¹³C NMR spectra

Figure S1. ¹H NMR spectra of *p*-DPP-PhCN.

Figure S2. ¹³C NMR spectra of *p*-DPP-PhCN.

Figure S3. ¹H NMR spectra of *m*-DPP-PhCN.

Figure S4. ¹³C NMR spectra of *m*-DPP-PhCN.

Figure S5. ¹H NMR spectra of *o*-DPP-PhCN.

Figure S6. ¹³C NMR spectra of *o*-DPP-PhCN.

2. Normalized UV absorption spectra

Figure S7. Normalized UV absorption spectra of DPP-PhCN acceptors in solution (solid lines) and film (symbols).

3. OPV characteristics

Active layer	D/A ratio	Annealing Temp (°C)	V _{OC} (V)	$J_{\rm SC}$ (mA/cm ²)	FF (%)	PCE (%)
РЗНТ: <i>р</i>-DPP-PhCN	1:2	90	0.59	1.52	40	0.35
		120	0.38	1.44	40	0.22
		150	0.15	0.78	37	0.04
	1:1	90	0.78	1.24	37	0.36
		120	0.56	1.64	50	0.47
		150	0.28	0.73	43	0.09
	2:1	90	0.47	1.01	49	0.23
		120	0.44	1.48	54	0.35
		150	0.24	1.18	46	0.13
РЗНТ: <i>т-DPP-PhCN</i>	1:2	90	0.51	0.43	29	0.06
		120	0.55	0.58	32	0.10
		150	0.32	0.30	29	0.03
	1:1	90	0.43	0.47	30	0.06
		120	0.45	0.56	31	0.08
		150	0.28	0.29	36	0.03
	2:1	90	0.45	0.36	33	0.05
		120	0.51	0.33	27	0.05
		150	0.26	0.18	35	0.02
P3HT: <i>o</i>-DPP-PhCN	1:2	90	1.09	1.14	34	0.43
		120	1.07	1.22	28	0.37
		150	0.12	0.42	32	0.02
	1:1	90	1.08	0.81	46	0.40
		120	1.09	1.19	35	0.46
		150	0.25	0.39	36	0.04
	2:1	90	1.09	0.92	44	0.44
		120	1.09	1.17	36	0.46
		150	0.58	0.82	45	0.22

Table S1. Photovoltaic performances with various blend ratios and annealing temperatures ^{*a*}

^a Devices are spin-coated from a chloroform solution and annealed for 10 min

Figure S8. J-V curves of OPV devices using chloroform as a solvent with various blend ratios and annealing temperatures.

4. Atomic force microscopy (AFM) images

Figure S9. AFM images $(10 \times 10 \ \mu\text{m})$ of the (a) Device I (P3HT:*p*-**DPP-PhCN** = 1:1, rms = 4.97 nm), (b) Device II (P3HT:*o*-**DPP-PhCN**:*p*-**DPP-PhCN** = 1:0.25:0.75, rms = 11.49 nm), (c) Device III (P3HT:*o*-**DPP-PhCN**:*p*-**DPP-PhCN** = 1:0.5:0.5, rms = 8.20 nm), (d) Device IV (P3HT:*o*-**DPP-PhCN**:*p*-**DPP-PhCN** = 1:0.75:0.25, rms = 2.95 nm), (e) Device V (P3HT:*o*-**DPP-PhCN** = 1:1, rms = 4.71 nm), and (f) P3HT:*o*-**DPP-PhCN**:*p*-**DPP-PhCN** = 1:0.25:0.75 (rms = 6.26 nm). The films were annealed at 120 °C (a–e) or 90 °C (f).