Supporting Information for

Iron (III) Bromide Catalyzed Bromination of 2-*tert*-Butylpyrene and Corresponding Positions-Dependent Aryl-Functionalized Pyrene Derivatives

Xing Feng,^{a,b} Jian-Yong Hu,^{b,c} Hirotsugu Tomiyasu,^b Zhu Tao,^d Carl Redshaw,^e Mark R.J. Elsegood,^f Lynne Horsburgh,^f Simon J. Teat,^g Xian-Fu Wei,^a and Takehiko Yamato^{*b}

^a School of Printing and Packing Engineering, Beijing Institute of Graphic Communication, 1 Xinghua Avenue (Band Two), Daxing, Beijing 102600 P.R. China,
 ^b Department of Applied Chemistry, Faculty of Science and Engineering, Saga University, Honjo-machi 1, Saga 840-8502 Japan. E-mail: yamatot@cc.saga-u.ac.jp
 ^c Emergent Molecular Function Research Group, RIKEN Center for Emergent Matter Science (CEMS), Wako, Saitama 351-0198, Japan

^d Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang, Guizhou, 550025, P. R. China.

^e Department of Chemistry, The University of Hull, Cottingham Road, Hull, Yorkshire, HU6 7RX, UK.

^{*f*} Chemistry Department, Loughborough University, Loughborough, LE113TU, UK. ^{*g*} ALS, Berkeley Lab, 1 Cyclotron Road, MS2-400, Berkeley, CA 94720, USA.

Table of Contents

- 1 300 MHz ¹HNMR sprectrum of **1** and **2a**
- 2 300 MHz ¹HNMR sprectrum of **2b** and **2c**
- 3 300 MHz ¹HNMR sprectrum of 2d and 2e
- 4 300 MHz ¹HNMR sprectrum of **2f** and **3a**
- 5 300 MHz ¹HNMR sprectrum of **3b** and **3c**
- 6 300 MHz ¹HNMR sprectrum of **3b** and 400 MHz ¹HNMR

sprectrum 3c

- 7 300 MHz ¹HNMR sprectrum of **3e** and **3f**
- 8 100 MHz ¹³CNMR sprectrum of **3a** and **3b**
- 9 100 MHz ¹³CNMR sprectrum of **3c** and **3e**
- 10 75 MHz ¹³CNMR sprectrum of **3f**
- 11 the key crystallographic data of **3**
- 12 Mechanism of bromination of 2-tert-butyl pyrene
- 13 Quantum Chemistry Computation

Copy of NMR Spectra

Figure S1-1 ¹H-NMR spectrum (300 MHz, 293K, * CDCl₃) for **1** including an expansion of the aromatic region.

Figure S1-2 ¹H-NMR spectrum (300 MHz, 293K, * CDCl₃) for **2a** including an expansion of the aromatic region.

Figure S1-3 ¹H-NMR spectrum (300 MHz, 293K, * CDCl₃) for **2b** including an expansion of the aromatic region.

Figure S1-4 ¹H-NMR spectrum (300 MHz, 293K, * CDCl₃) for **2c** including an expansion of the aromatic region.

Figure S1-5 ¹H-NMR spectrum (300 MHz, 293K, * CDCl₃) of mixture **2d** and **2f** including an expansion of the aromatic region.

Figure S1-6 ¹H-NMR spectrum (300 MHz, 293K, * CDCl₃) for **2e** including an expansion of the aromatic region.

Figure S1-14 1 H-NMR spectrum (300 MHz, 293K, * CDCl₃) for 3f.

Figure S1-8 ¹H-NMR spectrum (300 MHz, 293K, * CDCl₃) for **3a** including an expansion of the aromatic region.

Figure S1-9 ¹H-NMR spectrum (300 MHz, 293K, * CDCl₃) for **3b** including an expansion of the aromatic region.

Figure S1-10 ¹H-NMR spectrum (400 MHz, 293K, * CDCl₃) for 3c.

Figure S1-11 1 H-NMR spectrum (300 MHz, 293K, * CDCl₃) for 3e.

Figure S1-12 ¹H-NMR spectrum (300 MHz, 293K, * CDCl₃) for 3f.

Figure S1-13 ¹³C-NMR spectrum (100 MHz, 293K, * CDCl₃) for 3a.

Figure S1-14 ¹³C-NMR spectrum (75 MHz, 293K, * CDCl₃) for **3b**.

Figure S1-15 ¹³C-NMR spectrum (100 MHz, 293K, * CDCl₃) for 3c.

Figure S1-16¹³C-NMR spectrum (100 MHz, 293K, * CDCl₃) for 3e.

Figure S1-17 ¹³C-NMR spectrum (75 MHz, 293K, * CDCl₃) for 3f.

Mechanism of bromination of 2-tert-butyl pyrene

Structure	Ratio	Coefficients	Nb	Ne
	ψ1: ψ2	1.31	2	2
Ψ3 Ψ4	ψ3: ψ4	1.27	3	2
ψ_{5}	ψ5: ψ6	1.00	1	1

Table S1 the ratio of benzenoid rings and double bonds^[1]

Nb=number of benzenoid rings ;Ne=number of exposed bonds

Scheme S1 Possible regioselective bromination mechanism of 1

[1] Moffitt, W. E.; Coulson, C. A. Proc. Phys. Soc.; 1948, 60, 309-315.

X-Ray diffraction data

Parameter	3a	3b	3c	3d	3e	3f
Empirical formula	C ₂₇ H ₂₄ O	$C_{34}H_{30}O_2$	$C_{41}H_{36}O_3$	$C_{41}H_{36}O_3$	$\mathrm{C}_{48}\mathrm{H}_{42}\mathrm{O}_{4}$	$C_{48}H_{42}O_4$
Formula weight [g mol ⁻¹]	364.49	470.61	576.70	576.70	682.81	682.82
Crystal system	orthorhombic	monoclinic	Monoclinic	triclinic	monoclinic	triclinic
Space group	P b c a	$P2_l/c$	$P2_{1}/c$	P -1	$P2_{1}/c$	<i>P</i> -1
a [Å]	34.643(4)	18.815(14)	9.136 (2)	10.299(6)	17.5703(6)	12.642(2)
<i>b</i> [Å]	11.0927(16)	15.629(11)	17.638 (4)	12.845(7)	8.8286(3)	12.960(2)
<i>c</i> [Å]	10.1811(13)	8.851(6)	19.524 (4)	13.482(12)	24.0368(9)	13.854(2)
α [°]	-	-		111.174(9)		86.048(2)°
β [°]	-	103.255(9)	98.252 (4)°	103.142(10)	101.190(2)	67.354(2)°
γ [°]	-	-		102.291(7)		60.942(2)°
Volume [Å ³]	3912.4(9)	2533(3)	3113.5 (12)	1531.8(19)	3657.7(2)	1811.4(5)
Z	8	4	4	2	4	2
Density, calcd [gm ⁻³]	1.237	1.234	1.230	1.250	1.240	1.252
Temperature [K]	113	123	150	296(2)	100(2)	150(2)
Unique reflns	3495	5722	7734	5187	73709	10122
Obsdreflns	2925	4734	6709	3075	13376	7260
Parameters	257	330	500	397	637	476
R _{int}	0.0475	0.0640	0.034	0.0535	0.0404	0.0255
$R[I>2\sigma(I)]^a$	0.0360	0.1034	0.048	0.0911	0.0441	0.0475
$wR[I>2\sigma(I)]^b$	0.1041	0.3036	0.146	0.2649	0.1317	0.1413
GOF on F ²	1.123	1.186	1.06	0.988	1.035	1.047

 Table S2 Summary of crystal data of pyrene derivatives 3

^a Conventional R on F_{hkl} : $\Sigma ||F_o| = |F_c||/\sigma|F_o|$. ^b Weighted R on $|F_{hkl}|^2$: $\Sigma [w(F_o^2 - F_c^2)2]/\Sigma [w(F_o^2)^2]^{1/2}$

Quantum Chemistry Computation

Figure S2-2 Geometric structures of bromo-substituted pyrene 2 in the FeBr₃-catalyzed reactions. The unit of angle is in $^{\circ}$.

Figure S3-1 Computed molecular orbital plots (B3LYP/6–31G*) for **3b**: The left plots represent the HOMOs, and the right plots represent the LUMOs.

Figure S3-2 Computed molecular orbital plots (B3LYP/6–31G*) for **3f**: The left plots represent the HOMOs, and the right plots represent the LUMOs.

Figure S3-3 Computed molecular orbital plots (B3LYP/6–31G*) for **4**: The left plots represent the HOMOs, and the right plots represent the LUMOs.

Compound	LUMO	LUMO	$\underline{E_{ox}}^{1/2[c]}$	$\underline{E}_{ox}^{onset[d]}$	E _{ox (Fc)} onset[d]	HOMO	HOMO-LUMO
	$(eV)^{[a]}$	$(eV)^{[b]}$	(eV)	(eV)	(eV)	(eV)	$\Delta E (eV)$
3 a	-1.41	nd	nd	nd	nd	-5.06 ^[a] / nd	3.65 ^[a] / 3.30 ^[e]
3b	-1.41	-2.27	1.45	1.36	0.66	-4.93 / -5.44 ^[b]	3.51 / 3.17
3c	-1.39	-2.13	1.51	1.32	0.64	-4.84 / -5.06	3.45 / 3.13
3d	-1.39	nd	nd	nd	nd	-4.82 / nd	3.43 / nd
3e	-1.39	-2.33	1.64	1.59	0.65	-4.76 / -5.36	3.37 / 3.03
3 f	-1.36	-2.34	1.67	1.61	0.65	-4.76 / -5.37	3.40 / 3.03
4	-1.47	nd	nd	nd	nd	-4.71 / nd	3.24 / 2.94
5	-1.22	nd	nd	nd	nd	-4.93 / nd	3.70 / 3,31

Table S3. Physical and electrochemical properties of compounds 3, 4 and 5.

^[a] DFT/B3LYP/6-31G^{*} using Gaussian, ^[b] HOMO and LUMO energy levels were calculated according to equations: $-(4.8+E_{ox}^{onset})$ and LUMO = HOMO + E_{g} , ^[c] $E_{ox}^{1/2}$ is the half-wave potential of the oxidative waves, ^[d] E_{ox}^{onset} is the onset potential of the first oxidative wave, with potentials *versus* Fc/Fc⁺ couple. ^[e] E_{g} : estimated from UV-vis absorption spectra in solution. nd. No determination.