Supporting Information

One-pot synthesis of UiO-66@SiO₂ shell-core microspheres as stationary phase for high

performance liquid chromatography

Xiaoqiong Zhang, Qiang Han, Mingyu Ding*

Beijing Key Laboratory for Microanalytical Methods and Instrumentation, Department of Chemistry, Tsinghua University, Beijing 100084, China

Correspondence:

Prof. Mingyu Ding, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China

Email: dingmy@mail.tsinghua.edu.cn

Tel: +86-10-62797087, Fax: +86-10-62781106.

Table of Contents:

Table S1: The synthesis conditions for different UiO-66@SiO₂ composites.

Table S2: The retention time (t_r) and retention factors (k) of aniline compounds on the UiO-66@SiO₂ packed columns with different loading amount of UiO-66 shell.

Fig. S1: SEM images of (A) UiO-66@SiO₂-0.08; (B) UiO-66@SiO₂-1.28; (C) UiO-66@SiO₂-2.56.

Fig. S2: SEM image of UiO-66.

Fig. S3: XRD patterns of UiO-66@SiO₂ composites prepared at 85°C, 100°C, 110°C and 120°C for 24 h.

Fig. S4: XRD patterns of UiO-66@SiO₂ composites prepared at 120°C for 3 h, 6 h, 12 h and 24 h.

Fig. S5: SEM images of (A) UiO-66@SiO₂-0.16; (B) UiO-66@SiO₂-0.32; (C) UiO-66@SiO₂-0.64 after

ultrasonic for 10 min in a dichloromethane solution.

Fig. S6: Effect of the flow rate on the column backpressure on UiO-66@SiO₂-0.16 packed column.

Fig. S7. Chromatograms of the separation of (A) xylenes and ethylbenzene, (B) alkyl benzenes, (C) anilines and (D) substituted benzenes on UiO-66@SiO₂-0.16 packed column with different ratio of ACN/H₂O as mobile phase. Other separation conditions are identical to Fig. 6.

Fig. S8. Chromatograms on commercial C18 column for the separation of four groups of analytes: (A) xylenes and ethylbenzene; mobile phase, 50% ACN; (B) alkyl benzenes; mobile phase, 70% ACN; (C) anilines; mobile phase, 50% ACN; (D) substituted benzenes; mobile phase, 50% ACN. Other separation conditions are identical to Fig. 6.

Fig. S9: Chromatograms of PAHs on UiO-66@SiO₂-0.16 packed column with 20% ACN as mobile phase at a flow rate of 1.0 mL min⁻¹. The signals were monitored with a UV detector at 254 nm.

Fig. S10: Chromatograms of phenolic compounds on (A) UiO-66@SiO₂-0.16 packed column and (B) aminosilica packed column with different ratio of ACN/H₂O as mobile phase at a flow rate of 1.0 mL min⁻¹. The signals were monitored with a UV detector at 270 nm.

Sample name	ZrCl ₄	H ₂ BDC	Acetic acid	Temperature	Time
	(g)	(g)	(mL)	(°C)	(h)
UiO-66@SiO ₂ -0.08	0.08	0.057	0.5	120	24
UiO-66@SiO ₂ -0.16	0.16	0.114	1.0	120	24
UiO-66@SiO ₂ -0.32	0.32	0.228	2.0	120	24
UiO-66@SiO ₂ -0.64	0.64	0.456	4.0	120	24
UiO-66@SiO ₂ -1.28	1.28	0.912	8.0	120	24
UiO-66@SiO ₂ -2.56	2.56	1.824	16.0	120	24
85 °C	0.64	0.456	4.0	85	24
100 °C	0.64	0.456	4.0	100	24
110 °C	0.64	0.456	4.0	110	24
3 h	0.64	0.456	4.0	120	3
6 h	0.64	0.456	4.0	120	6
12 h	0.64	0.456	4.0	120	12

Table S1 The synthesis conditions for different UiO-66@SiO₂ composites.^a

^aThe synthesis of the UiO-66@SiO₂ composites was identical to what was described in experimental section.

Table S2 The retention time (t_r) and retention factors (k) of aniline compounds on the UiO-66@SiO2 packedcolumns with different loading amount of UiO-66 shell.^a

	p-phenylenediamine		aniline		N,N-dimethylaniline		p-chloroaniline	
Column	t _r (min)	k						
UiO-66@SiO ₂ -0.16	2.071	0.126	2.657	0.319	3.225	0.439	4.397	0.588
UiO-66@SiO ₂ -0.32	1.331	0.047	1.635	0.224	2.151	0.410	5.366	0.764
UiO-66@SiO ₂ -0.64	1.624	0.158	2.647	0.484	3.846	0.645	6.526	0.791

^aExperimental conditions were identical to Fig. 8.

Fig. S1. SEM images of (A) UiO-66@SiO₂-0.08; (B) UiO-66@SiO₂-1.28; (C) UiO-66@SiO₂-2.56.

Fig. S2. SEM image of UiO-66.

Fig. S3. XRD patterns of UiO-66@SiO₂ composites prepared at 85°C, 100°C, 110°C and 120°C for 24 h. It can be seen that the signal intensity of the characteristic peaks of UiO-66 increases with the reaction temperature.

Fig. S4. XRD patterns of UiO-66@SiO₂ composites prepared at 120°C for 3 h, 6 h, 12 h and 24 h. It can be seen that the signal intensity of the characteristic peaks of UiO-66 increases with the reaction time.

Fig. S5. SEM images of (A) UiO-66@SiO₂-0.16; (B) UiO-66@SiO₂-0.32; (C) UiO-66@SiO₂-0.64 after ultrasonic for 10 min in a dichloromethane solution.

Fig. S6. Effect of the flow rate on the column backpressure on UiO-66@SiO₂-0.16 packed column. 100% ACN was used as mobile phase.

Fig. S7. Chromatograms of the separation of (A) xylenes and ethylbenzene, (B) alkyl benzenes, (C) anilines and (D) substituted benzenes on UiO-66@SiO₂-0.16 packed column with different ratio of ACN/H₂O as mobile phase. Other separation conditions are identical to Fig. 6.

Fig. S8. Chromatograms on commercial C18 column for the separation of four groups of analytes: (A) xylenes and ethylbenzene; mobile phase, 50% ACN; (B) alkyl benzenes; mobile phase, 70% ACN; (C) anilines; mobile phase, 50% ACN; (D) substituted benzenes; mobile phase, 50% ACN. Other separation conditions are identical to Fig. 6.

Fig. S9. Chromatograms of PAHs on UiO-66@SiO₂-0.16 packed column with 20% ACN as mobile phase at a flow rate of 1.0 mL min⁻¹. The signals were monitored with a UV detector at 254 nm.

Fig. S10. Chromatograms of phenolic compounds on (A) UiO-66@SiO₂-0.16 packed column and (B) aminosilica packed column with different ratio of ACN/H₂O as mobile phase at a flow rate of 1.0 mL min⁻¹. The signals were monitored with a UV detector at 270 nm.