Supporting Information

Optically active helical polyacetylene/Fe₃O₄ composite microspheres: prepared by precipitation polymerization and used for enantioselective crystallization

Huaiyu Chen, Lei Li, Dong Liu, Huajun Huang, Jianping Deng* and Wantai Yang

Figure S1. ¹H NMR spectra of the pure PSA (CDCl₃).

The microspheres were dissolved in tetrahydrofuran, the Fe_3O_4 NPs were excluded with a magnet, and then the residual tetrahydrofuran solution was added into n-hexane to obtain the pure PSA. Finally the pure PSA was dissolved in CDCl₃ to obtain the solution for NMR measurement.

¹H NMR (CDCl₃, 400MHz): δ 0.91–0.98 (C=OCC(*CH*₃)₂), 1.43–1.45 (C*CH*₂*CH*₂CH), 1.91–2.13 (CCH₂CH₂CH), 2.38–2.42 (C=O*CH*₂), 3.02–3.05 (O=S=O*CH*₂), 3.70–3.72 (CH=C*CH*₂), 5.58–5.70 (*CH*=C).

Figure S2. Typical Raman spectrum of pure PSA.

Figure S3. Energy dispersive X-ray (EDX) spectrum data of CMMSs-1.

Figure S4. XRD patterns of pure L-alanine (A) and L-alanine obtained via enantioselective crystallization by using S-PSA microspheres (CMMSs-1).