Supporting Information File

Green chemical incorporation of silicon into polyoxoanions

of molybdenum: characterization, thermal kinetics study

and their photocatalytic water splitting

Bessy D'Cruz, Jadu Samuel* and Leena George

Physical Chemistry Chemical Physics

Department of Chemistry Mar Ivanios College

Nalanchira, Thiruvananthapuram -695015, Kerala,

India Fax: +91 471 2530023 E-mail: jadu_samuel@yahoo.co.in

The Figure discussed in the manuscript

Fig. S1 Dependence of activation energy (*E*) on degree of conversion (α) determined using FWO and KAS methods for stages I and II for the thermal decomposition of CSM nano particles.

The Table discussed in the manuscript

Table S2 Expressions for $g(\alpha)$ reaction model to describe the reaction kinetics in heterogeneous solid state systems.

Mechanism	Symbols	Formula of $g(\alpha)$
Mampel power law/n=2	P ₂	$2a^{1/2}$
Mampel power law/n=3	P ₃	$1.5a^{2/3}$
Mampel power law/n=4	P_4	$4a^{3/4}$
Avrami-Erofeev eq.	A_2	$[-\ln(1-\alpha)]^{1/2}$
Avrami-Erofeev eq.	A ₃	$[-\ln(1-\alpha)]^{1/3}$
Avrami-Erofeev eq.	A_4	$[-\ln(1-\alpha)]^{1/4}$
Avrami-Erofeev eq.	A _{3/2}	$[-\ln(1-\alpha)]^{2/3}$
Power law	R_1	α
Power law	R ₂	$1 - (1 - \alpha)^{1/2}$
Power law	R ₃	1- $(1 - \alpha^{1/3})$
Parabolic law	D_1	α^2
Valensi eq.	D_2	α +(1- α)[ln(1-
Jander eq.	D ₃	$[1-(1-\alpha)^{1/3}]^2$
Anti-Ginstling-Brounstein eq.	D_4	1-(2 α/3)-(1-
Anti -Zhuravlev eq.	D_5	$[(1+\alpha)^{1/3}-1]^2$
First order /Mampel	F_1	$-\ln(1-\alpha)$
Second order	F ₂	$(1 - \alpha)^{-1} - 1$
Third order	F ₃	$(1 - \alpha)^{-2} - 1$
Three-quarters order	F _{3/4}	1- $(1 - \alpha)^{1/4}$
One and a half order	F _{3/2}	$(1 - \alpha)^{-1/2} - 1$