Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2014

N-doped carbon xerogels as adsorbents for removal of heavy metal ions from aqueous solution

Bin Yang¹, Chengxiang Yu¹, Qingni Yu^{1,2}, Xingwang Zhang^{1,*}, Zhongjian Li¹, Lecheng Lei¹

¹Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China

² National Key Laboratory of Human Factors Engineering, China Astronaut Research and Training Center, Beijing 100094, China

Corresponding author: Dr. and Prof. Xingwang Zhang

Tel./Fax: +86-571-87952525, E-mail address: xwzhang@zju.edu.cn

Adsorption isotherms

Table S1. Parameters and correlation coefficients for the isotherm models

Models	Parameter	CX	NCX-100-2	NCX-150-2	NCX-200-2	NCX-150-1	NCX-150-1.5
Henry	k	0.106	0.118	0.131	0.103	0.109	0.115
	\mathbb{R}^2	0.674	0.516	0.522	0.485	0.800	0.814
Freundlich	n	2.068	2.845	2.640	2.598	4.002	4.314
	\mathbf{K}_{F}	3.665	10.387	9.576	7.710	16.778	20.071
	\mathbb{R}^2	0.929	0.867	0.831	0.846	0.914	0.974

Adsorption kinetics

Intraparticle diffusion model

$$R = k_t t^m (S1)$$

$$ln R = m ln t + ln k_t$$
(S2)

where R is the percentage adsorption and t is the contact time (min). k_t and m are the intraparticle diffusion rate constant and exponent factor, respectively. The value of lnR were plotted against lnt, as shown in Figure S1 (a).

Pseudo-first-order model

$$q_t = q_e \cdot \left[1 - \exp\left(-k_1 t\right)\right] \tag{S3}$$

$$_{\mathrm{OT}}\ln\left(q_{e}-q_{t}\right)=\ln q_{e}-k_{1}t\tag{S4}$$

where q_t is the adsorbed amount of Pb ions at equilibrium and k_l is the rate constant. The linear fit of $ln(q_e$ - $q_t)$ against t can be described in **Figure S1** (b).

Figure S1. The adsorption kinetics including (a) intraparticle diffusion and (b) pseudo-first-order models.

Table S2. Parameters and correlation coefficients for the kinetic models

Models	Parameter	CX	NCX-150-2	NCX-150-1
	$k_t (\mathrm{min}^{-1})$	25.221	43.104	39.982
Intraparticle diffusion	m	0.062	0.090	0.071
	R^2	0.956	0.902	0.909
	k_{I} (h ⁻¹)	6.777	4.995	7.195
Pseudo-first-order	$q_e (\mathrm{mg/g})$	17.4	34.9	28.7
	R^2	0.976	0.956	0.945