Electronic Supplementary Information

Synthesis of magnetic porous γ -Fe₂O₃/C@HKUST-1 composites for efficient removal of dyes and heavy metal ions from aqueous solution

Yuhao Xiong, Fanggui Ye,* Cong Zhang, Shufen Shen, Linjing Su, Shulin ZhaoKey Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), College of Chemistry and Pharmaceutical Science of Guangxi Normal University, Guilin 541004, P.R. China.

Fig.S1 The XRD local amplification figure (7.5°-30°) of γ -Fe₂O₃/C@HKUST-1.

Fig.S2 XPS survey spectrum of the as-prepared γ -Fe2O3/C@HKUST-1.

Fig. S3 XPS spectrum of as-prepared γ -Fe₂O₃/C@HKUST-1: high-resolution Fe 2p binding energy spectrum.

Fig. S4 FT-IR spectrum of $\gamma\text{-}Fe_2O_3/C, \gamma\text{-}Fe_2O_3/C@HKUST-1$ and HKUST-1

Fig. S5 Raman spectrum of γ-Fe₂O₃/C@HKUST-1 sample (red line: the integral peak, green line: the fitted curve

by Guassian type)

Fig. S6 Plots of pseudo-second-order kinetics for the adsorption of MB (a) and Cr (VI) (b) on γ -Fe₂O₃/C@HKUST-1.

Fig. S7 Langmuir plots of the isotherms for MB (a) and Cr (VI) (b) adsorption onto different adsorbents.

Fig. S8 Influence of pH on the adsorption of Cr (VI)

Fig. S9 The species of Cr (VI) (obtained by running Visual MINTEQ 3.0 based on the experimental data) at different pH values of solution.

Fig. S10 XPS spectra of Cr 2p on the γ -Fe₂O₃/C@HKUST-1 surface after sorption.

Pollutants	C ₀ /mg L ⁻¹	q_e (exp)/mg g ⁻¹	Pseudo-second-order kinetic model			
			q_e (cal)/mg g ⁻¹	k ₂ /g mg ⁻¹ min ⁻¹	R ²	
MB	400	198.5	204.1	5.80 × 10 ⁻³	0.999	
	200	100	101.0	6.35×10^{-3}	0.999	
	100	48.6	50.2	5.05×10^{-3}	0.999	
	50	23.7	25.1	5.21 × 10 ⁻³	0.999	
Cr (VI)	200	96.3	98.1	2.84×10^{-2}	0.995	
	150	58.4	59.5	4.88×10^{-2}	0.995	
	100	35.8	36.4	7.27×10^{-2}	0.996	
	50	23.8	24.2	1.09×10^{-1}	0.996	
Notes: C ₀ , init	ial concentration	of MB or Cr (VI);	q _e (cal), calculate	d adsorption capacity	y; q _e (exp),	
arra anima antal a	lagentian apposit	with manual appared	and an Irinatia agents	ant .		

	Table S1 Kinetic	parameters for the ads	orption of MB and C	r (VI) on γ-Fe	e ₂ O ₃ /C@HKUST-1	at 303 K
--	------------------	------------------------	---------------------	----------------	--	----------

experimental adsorption capacity; k_2 , pseudo-second-order kinetic constant.

Pollutants	$q_{exp} / mg g^{-1}$ –	Langmuir constants			
		Q _m	K _L	\mathbb{R}^2	
MB	370.2	400	0.07	0.999	
Cr (VI)	101.4	105	0.32	0.998	
Notes: q _{exp} , experimental adsorption capacity; Q _m , calculated adsorption capacity; K _L , Langmuir constant.					

Table S2 Langmuir parameters for the adsorption of MB and Cr (VI) on γ-Fe₂O₃/C@HKUST-1 at 303 K.