Supporting Information

A biomass-involved strategy for the synthesis of N-arylated dibenzo[b,e][1,4]oxazepin-11(5*H*)-ones, acridones, 7, 12-dihydro-dibenzo[b,e][1,4]oxazocin-6*H*-ones and dibenzo[b,f]azepin-10(11*H*)-ones

Ensheng Zhang,^{*a,c*} Xuejing Zhang,^{*b*} Wen Wei,^{*a*} Dejian Wang,^{*a,c*} Yuchen Cai,^{*b*} Tianlong Xu,^{*a,c*} Ming Yan,^{*b*} Yong Zou*^{*a,b*}

^a Guangzhou Institute of Chemistry, Chinese Academy of Sciences, Guangzhou 510650, P. R. China, Email: zou jinan@163.com.

^b School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China.

^c University of Chinese Academy of Sciences, Beijing, 100039, P. R. China.

Contents

I- Instruments and Chemicals	S1-S2
II- Experimental Procedure S <u>56</u> 5	S2-
W - ¹ H and ¹³ C spectra of compounds	\$2 <u>67</u> 6-
S92 32	

I-Instruments and Chemicals

(-)-Shikimic acid was kindly provided as a natural product by Guangxi Wan Shan Spice Co. Ltd. with chromatography grade. (-)-Methyl 3-dehydroshikimate was readily prepared from (-)-shikimic acid through an improved strategy of our previous report. Petroleum ether (PE) used in the experiments refers to the boiling fraction of 60-90 °C. Other reagents and solvents were purchased from commercial sources and used without further purification unless otherwise stated.

Reactions were monitored by thin-layer chromatography (TLC). Melting points

were measured on a Thiele apparatus and were uncorrected. Column chromatography was performed with silica gel (200-300 mesh) using EtOAc-PE system as the eluent. Microwave experiments were carried out with a scientific WBFY microwave reactor in a flask connected with a condenser (this microwave reactor was a monomode device with a tunable power controller from 80 W to 800 W). Reaction temperature was detected using an infrared thermometer and the ramp time is included as part of the reaction time. ¹H NMR and ¹³C NMR spectra were measured on a 400 MHz spectrometer (¹H 400 MHz, ¹³C 100 MHz) using CDCl₃ or DMSO-d₆ as the solvent at 298K or 323K. Chemical shifts were reported in parts per million (ppm) and are calibrated using residual undeuterated solvent as an internal reference. HRMS spectras were recorded on a LC-Q-TOF (ESI) apparatus. Mass spectrometery were measured on a Shimadzu GC-MS QP5050A in electron ionization mode.

II- Experimental Procedure

II-1 Synthesis of (-)-methyl 3-dehydroshikimate (3-MDHS)

Based on our previous studies, an improved method for the synthesis of (-)-methyl 3-dehydroshikimate has been established as follows:

Step 1:

To a solution of (-)-shikimic acid (17.4 g, 100 mmol) in MeOH (150 ml) was added p-TsOH (1.90 g, 10 mmol). The resulting mixture was heated to reflux until completion of the reaction (monitored by TLC). The mixture was filtered and the filtrate was evaporated under reduced pressure to afford a pale yellow oil, which was purified by recrystallization from EtOAc to give<u>white powder</u>_(-)-methyl shikimate<u>16.9g (90%) as a white powder. 16.9g (90%)</u>.

Step 2:

To a mixture of (-)-methyl shikimate (9.40 g, 0.05 mol) in THF (220 ml) was added IBX (16.8 g, 0.06 mol). The resulting mixture was stirred at 10-20 °C for the completion of the reaction (monitored by TLC). The iodosylbenzoic acid (IBA) byproduct was filtered off and recycled via oxidation into IBX with oxone. The filtrate was concentrated under reduced pressure to afford crude 3-MDHS as a white

solid. The crude product was recrystallized from EtOAc to give 3-MDHS <u>6.23g (67%)</u> in pure form as white crystals.

II-2 General procedure for the preparation of the starting materials N-arylated 2-aminophenols (1a-1p)

Based on our previous studies, an improved method for the synthesis of platform compounds N-arylated 2-aminophenols (**1a-1p**) under microwave condition has been established as follows:

To a flask (25 ml) were added 3-MDHS (1.02 g, 5.5 mmol), arylamine (5.0 mmol), p-TsOH (0.5 mmol) and DMF (10 ml). The mixture was stirred for 5-30 minutes at 110 °C (240 W). After completion of the reaction as indicated by TLC the mixture was poured into brine and stirred vigorously. The resulting solid was filtered and dried to furnish the desired product in pure form (80-99% yields). If necessary, these products could be further purified by recrystallization from EtOAc/PE.

II-3 General procedure for the preparation of the N-aryl dibenzo[b,e][1,4] oxazepin-11(5*H*)-ones (4a-4r)

To a flask (25 ml) were added **1** (1.0 mmol), 2-halogenated benzoic (1.0 mmol), Cu_2O (0.2 mmol), K_2CO_3 (0.42 g, 3 mmol) and DMF (5 ml). The mixture was stirred at 120 °C under microwave irradiation with the protection of N₂ for the indicated minutes (t_1). After completion of the reaction as indicated by TLC, the reaction mixture was filtered and the solid was washed with EtOH (1ml). Then, the filtrate was poured into water (50 ml) and acidified with hydrochloric acid (1N). The resulting solid was filtered and dried to furnish the triarylamine intermediates **3** (**3a-3r**). Then, to a flask (25 ml) were added the isolated intermediate **3**, DCM (5 ml), Et₃N (4 mmol), and BTC (1 mmol BTC dissolved in 3 ml DCM and added dropwise). The mixture was stirred for the indicated hours (t_2) at room temperature. After completion of the reaction as indicated by TLC, the mixture was washed with sodium carbonate solution

(20 ml, 5 %) and extracted with ethyl acetate (3 \times 20 ml). The combined organic layers was dried over anhydrous MgSO₄ and concentrated under vacuum to furnish the crude product, which could be further purified by recrystallization from EtOAc-PE or by column chromatography using EtOAc-PE as eluent.

II-4 General procedure for the preparation of the N-aryl acridones (5a-5f, 5h, 5p and 5q)

To a flask (25 ml) were added **1** (1.0 mmol), 2-halogenated benzoic (1.0 mmol), Cu₂O (0.2 mmol), K₂CO₃ (0.42 g, 3 mmol) and DMF (5 ml). The mixture was stirred at 120 °C under microwave irradiation with the protection of N₂ for the indicated minutes (t_1). After completion of the reaction as indicated by TLC, the reaction mixture was filtered and the solid was washed with EtOH (1ml). Then, the filtrate was poured into water (50 ml) and acidified with hydrochloric acid (1N). The resulting solid was filtered and dried to furnish the triarylamine intermediates **3** (**3a-3h**, **3q and 3r**). Then, to a flask (25 ml) were added intermediate **3** and BF₃·Et₂O (5 ml), the mixture was stirred at 60 °C for the indicated hours (t_2). After completion of the reaction as indicated by TLC, the mixture was poured into brine (20 ml) and extracted with ethyl acetate (3×20 ml). The combined organic layers was dried over anhydrous MgSO₄ and concentrated under vacuum to furnish the crude product, which could be further purified by recrystallization from EtOAc-PE.

II-5 General procedure for the preparation of the N-aryl 7, 12-dihydrodibenzo[b,e][1,4]oxazocin-6(H)-ones (6d and 6e)

To a flask (25 ml) were added 1 (1.0 mmol), 2-bromophenylacetic acid (1.0 mmol), Cu₂O (0.2 mmol), K₂CO₃ (0.42 g, 3 mmol) and DMF (5 ml). The mixture was stirred at 120 °C under microwave irradiation with the protection of N₂ for the indicated minutes (t_1). After completion of the reaction as indicated by TLC, the reaction mixture was filtered and the solid was washed with EtOH (1ml). Then, the filtrate was poured into water (50 ml) and acidified with hydrochloric acid (1N). The resulting solid was filtered and dried to furnish the triarylamine intermediates **3**. Then, to a

flask (25 ml) were added intermediate **3**, DCM (5 ml), Et₃N (4 mmol) and BTC (1 mmol BTC dissolved in 3 ml DCM and added dropwise). The mixture was stirred for the indicated hours (t_2) at room temperature. After completion of the reaction as indicated by TLC, the mixture was washed with sodium carbonate solution (20 ml, 5 %) and extracted with ethyl acetate (3 × 20 ml). The combined organic layers was dried over anhydrous MgSO₄ and concentrated under vacuum to furnish the crude product, which could be further purified by column chromatography using EtOAc-PE (1: 8) as eluent.

II-6 General procedure for the preparation of the N-aryl dibenzo [b,f]azepin-10(11*H*)-ones (7d and 7e)

To a flask (25 ml) were added **1** (1.0 mmol), 2-bromophenylacetic acid (1.0 mmol), Cu₂O (0.2 mmol), K₂CO₃ (0.42 g, 3 mmol) and DMF (5 ml). The mixture was stirred at 120 °C under microwave irradiation with the protection of N₂ for the indicated minutes (t_1). After completion of the reaction as indicated by TLC, the reaction mixture was filtered and the solid was washed with EtOH (1ml). Then, the filtrate was poured into water (50 ml) and acidified with hydrochloric acid (1N). The resulting solid was filtered and dried to furnish the triarylamine intermediates **3**. Then, to a flask (25 ml) were added intermediates **3** and BF₃·Et₂O (5 ml), the mixture was stirred at 60 °C for the indicated hours (t_2). After completion of the reaction as indicated by TLC, the mixture was poured into brine (20 ml) and extracted with ethyl acetate (3 × 20 ml). The combined organic layers was dried over anhydrous MgSO₄ and concentrated under vacuum to furnish the crude product, which could be further purified by recrystallization from EtOAc-PE.

Ш-Characterization data for Products

III-1 Characterization data for (-)-methyl shikimate and 3-MDHS

(-)-Methyl shikimate

White solid, m.p.112~113°C; $[\alpha]_D^{20} = -142^\circ$ (c = 0.2, MeOH); ¹H NMR (CD₃COCD₃, 400 MHz) δ : 6.73 (m, 1H, 2-H), 4.38 (m, 1H, 3-H), 4.02 (s, 1H, 4-OH D₂O exchangeable), 4.00 (brs, 2H, 3,5-OH D₂O exchangeable), 3.69 (s, 3H, OCH₃), 3.85 (m, 1H, 5-H), 3.68 (m, 1H, 4-H), 2.64 (dd, $J_I = 17.6$ Hz, $J_2 = 4.4$ Hz, 1H, 6 α -H), 2.18

(dd, *J*₁ = 17.6 Hz, *J*₂ =6.8 Hz, 1H, 6β-H); MS (EI): m/z =188 [M]⁺, 170 [M-H₂O]⁺, 157 [M-OCH₃]⁺, 129 [M-COOCH₃]⁺.

(-)-Methyl_-3-dehydroshikimate (3-MDHS)

White solid, m.p.122~123 °C; $[\alpha]_D^{20} = -55^\circ$ (c= 0.2, MeOH) ¹H NMR (CD₃COCD₃, 400 MHz) δ : 6.45 (d, J = 2.8 Hz, 1H, 2-H), 4.57 (d, J = 3.6 Hz, 1H, 4-OH D₂O exchangeable), 4.47 (d, J = 3.6 Hz, 1H, 5-OH D₂O exchangeable), 4.57 (dd, $J_1 = 10.4$ Hz, $J_2 = 3.6$ Hz, 1H, 4-H), 3.85(m, 1H, 5-H), 3.81(s, 3H, OCH₃), 3.06 (dd, $J_1 = 18.4$ Hz, $J_2 = 5.2$ Hz, 1H, 6 α -H), 2.18 (ddd, $J_1 = 18.4$ Hz, $J_2 = 8.8$ Hz, $J_3 = 3.2$ Hz, 1H, 6 β -H); MS (EI): m/z = 186 [M]⁺, 155 [M-OCH₃]⁺, 127 [M-COOCH₃]⁺.

III-2 Characterization data for representative triarylamine intermediates 3a and 3b.

2-((2-hydroxy-4-(methoxycarbonyl)phenyl)(phenyl)amino)benzoic acid (3a) White solid. m.p. >200-°C; ¹H NMR (400 MHz, DMSO- d_6) δ : ppm 13.20 (s, 1H), 10.49 (s, 1H), 7.83 (d, J = 2.00 Hz, 1H), 7.75 (dd, $J_1 = 8.40$ Hz, $J_2 = 2.00$ Hz, 1H), 7.70 (dd, $J_1 = 7.60$ Hz, $J_2 = 1.20$ Hz, 1H), 7.53 (m, 1H), 7.27 (m, 1H), 7.12 (m, 3H), 7.02 (d, J = 8.40 Hz, 1H), 6.77 (t, J = 7.20 Hz, 1H), 6.50 (d, J = 8.00 Hz, 2H), 3.76 (s, 3H); ¹³C NMR (100 MHz, DMSO- d_6) δ : ppm 169.2 (C=O), 165.7 (C=O), 158.7, 148.0, 144.4, 133.1, 132.8, 131.6, 130.5, 129.2, 129.0, 128.8, 128.5, 125.0, 121.4, 119.7, 117.0, 117.0, 51.8; IR (KBr) V_{max}/cm⁻¹ 3070, 2643, 2572, 2544, 2495, 1785, 1698, 1594, 1577, 1490, 1437, 1400, 1316, 1297, 1255, 1218, 1163, 1143, 1120, 1104, 1083, 1037, 772, 750, 643; MS (EI): m/z = 363 [M]⁺, 345, 286, 77; HRMS (ESI-TOF) calcd. for C₂₁H₁₈NO₅ [M+H]⁺ 364.1179, found: 364.1183.

2-((2-hydroxy-4-(methoxycarbonyl)phenyl)(p-tolyl)amino)benzoic acid (3b)

Pale yellow solid. m.p. >200–°C; ¹H NMR (400 MHz, DMSO-*d*₆) δ: ppm 13.04 (s, 1H), 10.39 (s, 1H), 7.76 (d, J = 2.00 Hz, 1H), 7.72 (dd, $J_I = 8.40$ Hz, $J_2 = 2.00$ Hz, 1H), 7.66 (dd, $J_I = 7.60$ Hz, $J_2 = 1.20$ Hz, 1H), 7.49 (m, 1H), 7.22 (t, J = 7.60 Hz, 1H), 7.08 (d, J = 8.00 Hz, 1H), 6.99 (d, J = 8.80 Hz, 1H), 6.92 (d, J = 8.00 Hz, 2H), 6.43 (d, J = 8.40 Hz, 2H), 3.75 (s, 3H), 2.17 (s, 3H); ¹³C NMR (100 MHz, DMSO-*d*₆) δ: ppm 169.3 (C=O), 165.7 (C=O), 158.7, 145.8, 144.7, 133.2, 132.8, 131.3, 130.4, 129.4, 129.1, 128.8, 128.7, 128.1, 124.5, 121.3, 117.7, 117.0, 51.8, 20.1; IR (KBr) V_{max}/cm⁻¹ 3074, 2643, 2572, 2544, 2495, 1700, 1670, 1608, 1577, 1513, 1431, 1398, 1297, 1246, 1210, 1161, 1143, 1117, 1096, 1086, 811, 788, 768; MS (EI): m/z = 377 [M]⁺, 359, 346, 77; HRMS (ESI-TOF) calcd. for C₂₂H₂₀NO₅ [M+H]⁺ 378.1336, found: 378.1339.

III-3 Characterization Data for N-aryl dibenzo[b,e][1,4]oxazepin-11(5*H*)-ones (Table 3 and Table 4).

Methyl_-5-phenyl dibenzo[b,e][1,4]oxazepin-11(5*H***)-one-7-carboxylate (4a) White solid; <u>yield: 0.31g (91%);</u> m. p.162~164°C; ¹H NMR (400 MHz, DMSO-***d***₆) δ: ppm 8.18 (d, J = 2.00 Hz, 1H), 7.98 (dd, J_I = 8.40 Hz, J_2 = 2.00 Hz, 1H), 7.88 (dd, J_I = 8.00 Hz, J_2 = 1.20 Hz, 1H), 7.77-7.82 (m, 1H), 7.71 (d, J = 8.00 Hz, 1H), 7.56 (d, J = 8.80 Hz, 1H), 7.52-7.56 (m, 1H), 7.16-7.20 (m, 2H), 6.85 (t, J = 7.20 Hz, 1H), 6.60 (d, J = 7.60 Hz, 2H), 3.85 (s, 3H); ¹³C NMR (100 MHz, DMSO-***d***₆) δ: ppm 164.8 (C=O), 163.2 (C=O), 153.0, 145.8, 145.7, 136.5, 135.3, 133.7, 131.2, 130.1, 129.5, 128.7, 128.4, 128.2, 126.3, 122.8, 119.9, 112.6, 52.5; IR (KBr) v_{max}/cm⁻¹ 3058, 3045, 2954, 2844, 1731, 1717, 1593, 1494, 1440, 1418, 1285, 1246, 1126, 1104, 1028, 690, 749; MS (EI): m/z = 345 [M]⁺, 314 [M-OCH₃]⁺, 286 [M-COOCH₃]⁺, 77; HRMS (ESI-TOF) calcd. for C₂₁H₁₅NNaO₄ [M+Na]⁺ 368.0893, found: 368.0887.**

Methyl_-5-(4-methylphenyl)-dibenzo[b,e][1,4]oxazepin-11(5*H*)-one-7-carboxylate (4b)

White solid; <u>yield</u>: 0.33g (91%); m. p.151~153°C; ¹H NMR (400 MHz, DMSO- d_6) δ : ppm 8.14 (d, J = 2.00 Hz, 1H), 7.96 (dd, $J_I = 8.40$ Hz, $J_2 = 2.00$ Hz, 1H), 7.86 (dd, J_I = 8.00 Hz, $J_2 = 1.20$ Hz, 1H), 7.55-7.97 (m, 1H), 7.66 (d, J = 7.60 Hz, 1H), 7.53 (t, J= 8.80 Hz, 1H), 7.50 (d, J = 7.60 Hz, 1H), 7.00 (d, J = 8.40 Hz, 2H), 6.54 (d, J = 8.40Hz, 2H), 3.84 (s, 3H), 2.17 (s, 3H); ¹³C NMR (100 MHz, DMSO- d_6) δ : ppm 164.8 (C=O), 163.3 (C=O), 152.9, 146.2, 143.5, 136.9, 135.2, 133.6, 131.0, 129.8, 129.0, 128.4, 128.1, 126.1, 122.7, 113.2, 52.5, 19.9; IR (KBr) v_{max} /cm⁻¹ 3029, 2988, 2991, 2945, 2916, 2856, 1740, 1729, 1595, 1517, 1485, 1453, 1432, 1330, 1305, 1280, 1244, 1214, 1190, 1122, 1150, 1050, 810, 762, 707; HRMS (ESI-TOF) calcd. for C₂₂H₁₇NNaO₄ [M+Na]⁺ 382.1050, found: 382.1059.

Methyl_____-5-(4-methoxylphenyl)-dibenzo[b,e][1,4]oxazepin-11(5*H*)-one-7-_ carboxylate (4c)

White solid; <u>yield: 0.35g (93%);</u> m. p.108~110 °C; ¹H NMR (400 MHz, DMSO-*d*₆) δ: ppm 8.10 (d, J = 2.00 Hz, 1H), 7.94 (dd, $J_I = 8.40$ Hz, $J_2 = 2.00$ Hz, 1H), 7.89 (dd, $J_I = 7.60$ Hz, $J_2 = 1.60$ Hz, 1H), 7.72-7.77 (m, 1H), 7.58 (dd, $J_I = 8.00$ Hz, $J_2 = 0.80$ Hz, 1H), 7.54 (d, J = 8.80 Hz, 1H), 7.44-7.49 (m, 1H), 6.85-6.87 (m, 2H), 6.74-6.77 (m, 2H), 3.86 (s, 3H), 3.69 (s, 3H); ¹³C NMR (100 MHz, DMSO-*d*₆) δ: ppm 164.9 (C=O), 163.6 (C=O), 154.2, 152.4, 147.2, 138.9, 137.7, 135.2, 133.8, 130.1, 129.3, 128.0, 127.3, 127.1, 125.1, 122.7, 116.9, 114.9, 55.3, 52.5; IR (KBr) v_{max} /cm⁻¹ 3052, 2993, 2948, 2906, 2833, 1744, 1729, 1595, 1510, 1457, 1434, 1408, 1331, 1285, 1248, 1211, 1187, 1117, 1107, 1057, 1026, 818, 768, 706; HRMS (ESI-TOF) calcd. for C₂₂H₁₈NO₅ [M+H]⁺ 376.1179, found: 376.1183.

Methyl-_5-(4-fluorophenyl)-dibenzo[b,e][1,4]oxazepin-11(5*H*)-one-7-carboxylate (4d)

White solid; <u>yield: 0.30g (83 %);</u> m. p. 174~176 °C; ¹H NMR (400 MHz, DMSO- d_6) δ : ppm 8.17 (d, J = 2.40 Hz, 1H), 7.98 (dd, $J_I = 8.80$ Hz, $J_2 = 2.00$ Hz, 1H), 7.88 (dd, $J_I = 8.00$ Hz, $J_2 = 1.20$ Hz, 1H), 7.77-7.81 (m, 1H), 7.70 (d, J = 8.00 Hz, 1H), 7.52-7.57 (m, 2H), 7.02-7.06 (m, 2H), 7.61-7.65 (m, 2H), 3.85 (s, 3H); ¹³C NMR (100 MHz, DMSO- d_6) δ: ppm 164.7 (C=O), 163.1 (C=O), 156.0 (d, ${}^{1}J_{CF}$ = 235.2 Hz, C-a), 152.9, 145.9, 142.4, 136.7, 135.3, 133.7, 130.9, 130.0, 128.4 (d, ${}^{3}J_{CF}$ = 7.9 Hz, C-c), 128.2, 126.1, 122.8, 116.0 (d, ${}^{2}J_{CF}$ = 22.5 Hz, C-b), 114.4, 114.3, 52.4; IR (KBr) v_{max} /cm⁻¹ 3112, 3057, 2998, 2948, 2838, 1741, 1712, 1593, 1511, 1482, 1454, 1427, 1407, 1119, 1103, 1056, 1022, 862, 763, 702; HRMS (ESI-TOF) calcd. for C₂₁H₁₄FNNaO₄ [M+Na]⁺ 386.0799, found: 386.0791.

Methyl-_5-(4-chlorophenyl)-dibenzo[b,e][1,4]oxazepin-11(5*H*)-one-7-carboxylate (4e)

White solid; <u>yield</u>: 0.32g (85%); m. p. >200°C; ¹H NMR (400 MHz, DMSO-*d*₆) δ : ppm 8.19 (d, *J* = 2.00 Hz, 1H), 7.99 (dd, *J*₁ = 8.40 Hz, *J*₂ = 2.00 Hz, 1H), 7.88 (dd, *J*₁ = 8.00 Hz, *J*₂ = 1.20 Hz, 1H), 7.78-7.83 (m, 1H), 7.73 (d, *J* = 7.60 Hz, 1H), 7.54-7.59 (m, 2H), 7.23 (d, *J* = 8.80 Hz, 2H), 6.62 (d, *J* = 8.80 Hz, 2H), 3.85 (s, 3H); ¹³C NMR (100 MHz, DMSO-*d*₆) δ : ppm 164.8 (C=O), 163.0 (C=O), 152.9, 145.3, 144.8, 136.2, 135.4, 133.7, 131.0, 130.3, 129.2, 128.7, 128.5, 128.3, 126.2, 123.6, 122.9, 114.1, 52.5; IR (KBr) ν_{max} /cm⁻¹ 3094, 2999, 2947, 2836, 1742, 1727, 1591, 1493, 1455, 1431, 1405, 1125, 1103, 1053, 1023, 820, 762, 712, 701; HRMS (ESI-TOF) calcd. for C₂₁H₁₅Cl³⁵NO₄ [M+H]⁺ 380.0684, found: 380.0692.

Methyl-_5-(4-bromophenyl)-dibenzo[b,e][1,4]oxazepin-11(5*H*)-one-7-carboxylate (4f)

White solid; <u>yield</u>: 0.36g (85%); m. p. >200°C; ¹H NMR (400 MHz, DMSO-*d₆*) δ : ppm 8.19 (d, *J* = 2.00 Hz, 1H), 7.99 (dd, *J₁* = 8.40 Hz, *J₂* = 2.00 Hz, 1H), 7.88 (dd, *J₁* = 8.00 Hz, *J₂* = 1.20 Hz, 1H), 7.79-7.83 (m, 1H), 7.73 (d, *J* = 7.60 Hz, 1H), 7.54-7.59 (m, 2H), 7.34 (d, *J* = 8.80 Hz, 2H), 6.55 (d, *J* = 8.80 Hz, 2H), 3.85 (s, 3H); ¹³C NMR (100 MHz, DMSO-*d₆*) δ : ppm 164.8 (C=O), 163.1 (C=O), 152.9, 145.2, 145.2, 136.1, 135.5, 133.8, 132.1, 131.0, 130.4, 128.7, 128.5, 128.3, 126.2, 122.9, 114.6, 111.3, 52.5; IR (KBr) v_{max} /cm⁻¹ 3087, 3050, 3033, 2998, 2946, 2829, 1741, 1730, 1584, 1507, 1492, 1456, 1430, 1106, 1053, 1019, 818, 764, 754, 711; HRMS (ESI-TOF) calcd. for C₂₁H₁₅Br⁷⁹NO₄ [M+H]⁺ 424.0179, found: 424.0183.

Methyl-__5-(4-acetylphenyl)-dibenzo[b,e][1,4]oxazepin-11(5*H*)-one-7-carboxylate (4g)

White solid; <u>yield: 0.30g (78%);</u> m. p. >200°C; ¹H NMR (400 MHz, DMSO-*d₆*) δ : ppm 8.27 (d, *J* = 2.00 Hz, 1H), 8.05 (dd, *J_I* = 8.40 Hz, *J₂* = 2.00 Hz, 1H), 7.92 (dd, *J_I* = 7.60 Hz, *J₂* = 1.20 Hz, 1H), 7.80-7.89 (m, 4H), 7.60-7.64 (m, 2H), 6.69 (d, *J* = 8.80 Hz, 2H), 3.88 (s, 3H), 2.46 (s, 3H); ¹³C NMR (100 MHz, DMSO-*d₆*) δ : ppm 195.8 (C=O), 164.7 (C=O), 162.9 (C=O), 152.6, 149.4, 144.5, 135.6, 135.5, 133.7, 130.8, 130.6, 130.5, 129.0, 128.8, 128.4, 128.4, 126.0, 122.9, 111.7, 52.5, 26.2; IR (KBr) ν_{max}/cm^{-1} 3083, 3068, 3047, 2997, 2944, 1740, 1725, 1659, 1590, 1515, 1502, 1484, 1457, 1426, 1358, 1107, 1058, 1025, 841, 765, 722, 705; HRMS (ESI-TOF) calcd. for C₂₃H₁₈NO₅ [M+H]⁺ 388.1178, found: 388.1183.

Methyl-___5-(4-nitrophenyl)-dibenzo[b,e][1,4]oxazepin-11(5*H*)-one-7-carboxylate (4h)

Yellow solid; <u>yield: 0.31g (80%);</u> m. p. >200°C; ¹H NMR (400 MHz, DMSO-*d*₆) δ: ppm 8.31 (d, J = 1.60 Hz, 1H), 8.09 (d, J = 9.20 Hz, 2H), 8.05 (dd, $J_1 = 8.40$ Hz, $J_2 = 2.00$ Hz, 1H), 7.92 (d, J = 7.60 Hz, 1H), 7.85-7.87 (m, 2H), 7.63 (d, J = 8.40 Hz, 2H), 6.77 (d, J = 9.60 Hz, 2H), 3.86 (s, 3H); ¹³C NMR (100 MHz, DMSO-*d*₆) δ: ppm 164.7 (C=O), 162.7 (C=O), 152.3, 151.0, 143.8, 139.7, 135.7, 135.1, 133.8, 130.9, 130.6, 129.4, 128.6, 128.2, 126.1, 125.8, 123.1, 112.2, 52.6; IR (KBr) v_{max} /cm⁻¹ 3109, 3085, 3073, 2999, 2948, 1742, 1721, 1592, 1588, 1459, 1432, 1103, 1057, 1022, 846, 764, 712; HRMS (ESI-TOF) calcd. for C₂₁H₁₅N₂O₆ [M+H]⁺ 391.0925, found: 391.0925.

Methyl_-5-(2-methylphenyl)-dibenzo[b,e][1,4]oxazepin-11(5*H*)-one-7-carboxylate (4i)

White solid; <u>yield: 0.31g (87%);</u> m. p. 99~101°C; ¹H NMR (400 MHz, DMSO- d_6) δ: ppm 7.96-8.01 (m, 2H), 7.77 (dd, $J_1 = 8.40$ Hz, $J_2 = 1.60$ Hz, 1H), 7.72 (d, J = 2.00 Hz, 1H), 7.54-7.59 (m, 1H), 7.45-7.52 (m, 4H), 7.10 (t, J = 7.60 Hz, 1H), 6.93 (d, J = 2.00 Hz, 1H), 3.78 (s, 3H), 2.18 (s, 3H); ¹³C NMR (100 MHz, DMSO- d_6) δ: ppm 165.0 (C=O), 164.6 (C=O), 149.0, 148.7, 139.9, 138.9, 137.3, 135.1, 134.8, 132.6, 132.4, 129.1, 127.4, 127.2, 126.7, 124.8, 123.1, 121.8, 120.1, 117.9, 52.5, 17.3; IR (KBr) v_{max} /cm⁻¹ 3075, 2996, 2946, 2835, 1725, 1595, 1565, 1502, 1476, 1449, 1432, 1118, 1105, 1067, 1039, 1000, 762, 742, 730, 701; HRMS (ESI-TOF) calcd. for $C_{22}H_{17}$ NNaO₄ [M+Na]⁺ 382.1050, found: 382.1055.

Methyl______-5-(2,5-dichlorophenyl)-dibenzo[b,e][1,4]oxazepin-11(5*H*)-one-7-_ carboxylate (4j)

Pink solid; <u>yield: 0.27g (65%);</u> m. p.186~188°C; ¹H NMR (400 MHz, DMSO-*d₆*) δ: ppm 8.56 (d, J = 2.40 Hz, 1H), 7.93 (dd, $J_I = 8.00$ Hz, $J_2 = 1.60$ Hz, 1H), 7.91 (d, J = 1.60 Hz, 1H), 7.82 (dd, $J_I = 8.40$ Hz, $J_2 = 2.00$ Hz, 1H), 7.72 (d, J = 8.80 Hz, 1H), 7.62 (dd, $J_I = 8.40$ Hz, $J_2 = 2.40$ Hz, 1H), 7.57-7.59 (m, 1H), 7.48 (d, J = 8.40 Hz, 1H), 7.24 (t, J = 7.60 Hz, 1H), 7.15 (d, J = 8.40 Hz, 1H), 3.82 (s, 3H); ¹³C NMR (100 MHz, DMSO-*d₆*) δ: ppm 164.9 (C=O), 164.2 (C=O), 149.8, 147.8, 140.3, 138.0, 135.0, 134.1, 132.8, 132.4, 132.4, 131.5, 129.8, 127.7, 127.4, 125.9, 124.0, 122.7, 122.1, 121.1, 52.5; IR (KBr) v_{max} /cm⁻¹ 3118, 3087, 3065, 2989, 2945, 1739, 1700, 1597, 1573, 1498, 1487, 1452, 1414, 1394, 1123, 1092, 1071, 1041, 821, 764, 728, 698; HRMS (ESI-TOF) calcd. for $C_{21}H_{14}Cl_{2}^{35}NO_4$ [M+H]⁺ 414.0294, found: 414.0289.

Methyl_-5-(3-methylphenyl)-dibenzo[b,e][1,4]oxazepin-11(5*H*)-one-7-carboxylate (4k)

White solid; <u>yield</u>: 0.32g (90%); m. p.141~143 °C; ¹H NMR (400 MHz, DMSO- d_6) δ: ppm 8.17 (d, J = 2.00 Hz, 1H), 7.98 (dd, $J_I = 8.40$ Hz, $J_2 = 2.00$ Hz, 1H), 7.88 (dd, J_I = 8.00 Hz, $J_2 = 1.20$ Hz, 1H), 7.78-7.82 (m, 1H), 7.69 (dd, $J_I = 8.00$ Hz, $J_2 = 1.20$ Hz, 1H), 7.57 (d, J = 8.40 Hz, 1H), 7.53-7.57 (m, 1H), 7.07 (t, J = 8.00 Hz, 1H), 6.67 (d, J= 7.20 Hz, 1H), 6.42 (s, 1H), 6.38 (dd, $J_I = 8.00$ Hz, $J_2 = 2.00$ Hz, 1H), 3.85(s, 3H), 2.15(s, 3H); ¹³C NMR (100 MHz, DMSO- d_6) δ: ppm 165.5 (C=O), 164.0 (C=O), 153.5, 146.4, 146.3, 139.4, 137.1, 135.9, 134.1, 131.7, 130.7, 129.8, 129.2, 129.0, 128.7, 126.7, 123.2, 121.4, 113.5, 110.4, 53.0, 21.7; IR (KBr) v_{max}/cm^{-1} 3078, 3054 ,3026, 2996, 2948, 2920, 2840, 1734, 1603, 1580, 1490, 1436, 1414, 1116, 1104, 1055, 1023, 853, 769, 738, 707, 693; HRMS (ESI-TOF) calcd. for C₂₂H₁₇NNaO₄ [M+Na]⁺ 382.1050, found: 382.1059.

Methyl_-5-(3-chlorophenyl)-dibenzo[b,e][1,4]oxazepin-11(5*H*)-one-7-carboxylate (4l)

White solid; <u>yield: 0.31g (83%);</u> m. p.140~142°C; ¹H NMR (400 MHz, DMSO-*d*₆) δ: ppm 8.21 (d, J = 2.00 Hz, 1H), 8.01 (dd, $J_I = 8.40$ Hz, $J_2 = 2.00$ Hz, 1H), 7.90 (dd, $J_I = 7.60$ Hz, $J_2 = 1.20$ Hz, 1H), 7.80-7.85 (m, 1H), 7.76 (d, J = 8.40 Hz, 1H), 7.56-7.60 (m, 2H), 7.21 (t, J = 8.00 Hz, 1H), 6.91 (d, J = 8.80 Hz, 1H), 6.53-6.55 (m, 2H), 3.85 (s, 3H); ¹³C NMR (100 MHz, DMSO-*d*₆) δ: ppm 164.7 (C=O), 163.0 (C=O), 152.8, 147.3, 144.8, 135.8, 135.5, 134.1, 133.8, 131.2, 131.0, 130.5, 128.9, 128.6, 128.4, 126.2, 122.9, 119.6, 111.8, 111.2, 52.5; IR (KBr) v_{max} /cm⁻¹ 3088, 3053, 2986, 2940, 2841, 1740, 1726, 1591, 1564, 1504, 1486, 1457, 1453, 1342, 1123, 1126, 1057, 1026, 837, 763, 713, 682, 627; HRMS (ESI-TOF) calcd. for C₂₁H₁₅Cl³⁵NO₄ [M+H]⁺ 380.0684, found: 380.0692.

Methyl____-5-(3-nitrophenyl)-dibenzo[b,e][1,4]oxazepin-11(5*H*)-one-7-carboxylate (4m)

Yellow solid; <u>yield: 0.32g (82%);</u> m. p.164~166°C; ¹H NMR (400 MHz, DMSO- d_6) δ : ppm 8.32 (d, J = 2.00 Hz, 1H), 8.06 (dd, J_I = 8.40 Hz, J_2 = 2.00 Hz, 1H), 7.96 (d, J= 7.60 Hz, 1H), 7.86-7.92 (m, 2H), 7.72 (dd, J_I = 8.40 Hz, J_2 = 1.60 Hz, 1H), 7.63-7.67 (m, 2H), 7.50 (t, J = 8.00 Hz, 1H), 7.35 (t, J = 2.00 Hz, 1H), 7.10 (dd, J_I = 8.00 Hz, $J_2 = 2.00$ Hz, 1H), 3.89 (s, 3H); ¹³C NMR (100 MHz, DMSO- d_6) δ : ppm 164.7 (C=O), 162.8 (C=O), 152.7, 148.7, 146.7, 144.4, 135.7, 135.5, 134.0, 131.0, 130.8, 130.8, 129.2, 128.6, 128.3, 126.1, 123.1, 118.6, 114.4, 106.0, 52.6; IR (KBr) v_{max}/cm^{-1} 3054, 3039, 2988, 2947, 2839, 1741, 1718, 1594, 1573, 1528, 1500, 1433, 1124, 1108, 1058, 1026, 889, 870, 840, 826, 800, 765, 737, 707, 671; HRMS (ESI-TOF) calcd. for C₂₁H₁₅N₂O₆ [M+H]⁺ 391.0925, found: 391.0925.

Methyl___-5-(3-(trifluoromethyl)phenyl)-dibenzo[b,e][1,4]oxazepin-11(5*H*)-one-7carboxylate (4n)

White solid; <u>yield: 0.31g (75%);</u> m. p.141~143°C; ¹H NMR (400 MHz, DMSO-*d*₆) δ: ppm 8.28 (d, J = 2.00 Hz, 1H), 8.04 (dd, $J_I = 8.80$ Hz, $J_2 = 2.00$ Hz, 1H), 7.93 (d, J = 8.80 Hz, 1H), 7.82-7.89 (m, 2H), 7.59-7.63 (m, 2H), 7.45 (t, J = 8.00 Hz, 1H), 7.21 (d, J = 7.60 Hz, 1H), 6.92 (dd, $J_I = 8.40$ Hz, $J_2 = 2.00$ Hz, 1H), 6.79 (s, 1H), 3.87 (s, 3H); ¹³C NMR (100 MHz, DMSO-*d*₆) δ: ppm 164.7 (C=O), 162.9 (C=O), 152.7, 146.3, 144.6, 135.7, 135.5, 133.8, 130.9, 130.8, 130.5, 129.9 (q, ² $J_{CF} = 31.2$ Hz, C-b), 129.0, 128.4, 126.1, 125.2 (q, ¹ $J_{CF} = 270.9$ Hz, C-a), 122.9, 122.5, 119.8, 116.2, 107.8, 52.5; IR (KBr) v_{max} /cm⁻¹ 3092, 3073, 3035, 3997, 2949, 2839, 1741, 1724, 1596, 1497, 1463, 1443, 1174, 1132, 1109, 1074, 1057, 886, 870, 843, 789, 766, 709; HRMS (ESI-TOF) calcd. for C₂₂H₁₅F₃NO₄ [M+H]⁺ 414.0948, found: 414.0947.

Pink crystals; <u>vield: 0.27g (68%);</u> m.p.119~121°C; ¹H NMR (400 MHz, DMSO-*d*₆) δ : ppm 8.32 (d, J = 6.80 Hz, 1H), 8.19 (d, J = 8.40 Hz, 1H), 8.06-8.15 (m, 3H), 7.89 (d, J = 7.60 Hz, 1H), 7.86 (d, J = 1.20 Hz, 1H), 7.77 (dd, $J_I = 8.40$ Hz, $J_2 = 2.00$ Hz, 1H), 7.58-7.64 (m, 2H), 7.54 (d, J = 8.40 Hz, 1H), 7.44-7.49 (m, 1H), 7.12 (t, J = 7.20Hz, 1H), 7.06 (d, J = 8.40 Hz, 1H), 3.75 (s, 3H); ¹³C NMR (100 MHz, DMSO-*d*₆) δ : ppm 164.9 (C=O), 164.5 (C=O), 149.5, 148.9, 139.5, 137.0, 135.1, 134.9, 134.9, 131.3, 131.0, 129.4, 128.8, 127.9, 127.4, 127.0, 127.0, 125.7, 124.7, 123.1, 122.1, 121.8, 120.0, 117.8, 52.4; IR (KBr) v_{max} /cm⁻¹ 3097, 3056, 3011, 2994, 2950, 2836, 1721, 1594, 1563, 1503, 1475, 1445, 1190, 1105, 1038, 889, 842, 813, 782, 759, 735, 709, 633; HRMS (ESI-TOF) calcd. for C₂₅H₁₈NO₄ [M+H]⁺ 396.1230, found: 396.1232.

Methyl_____-5-(4-chlorobiphenyl-4-yl)-dibenzo[b,e][1,4]oxazepin-11(5*H*)-one-7-_ carboxylate (4p)

White solid; <u>yield: 0.39g (85%);</u> m. p. >200°C; ¹H NMR (400 MHz, DMSO- d_6) δ: ppm 8.23 (d, J = 2.00 Hz, 1H), 8.01 (dd, $J_1 = 8.40$ Hz, $J_2 = 2.00$ Hz, 1H), 7.90 (d, J = 8.80 Hz, 1H), 7.81-7.85 (m, 1H), 7.77 (d, J = 7.60 Hz, 1H), 7.56-7.60 (m, 4H), 7.52 (d, J = 8.80 Hz, 2H), 7.44 (d, J = 8.40 Hz, 2H), 6.70 (d, J = 8.80 Hz, 2H), 3.86 (s, 3H); ¹³C NMR (100 MHz, DMSO- d_6) δ: ppm 164.8 (C=O), 163.2 (C=O), 153.0, 145.5, 145.4, 138.4, 136.3, 135.4, 133.7, 131.4, 131.1, 130.4, 130.2, 128.8, 128.6, 128.6, 128.3, 127.7, 127.6, 126.3, 122.9, 113.0, 52.5; IR (KBr) v_{max} /cm⁻¹ 3076, 3048, 3028, 2993, 2945, 2832, 1741, 1725, 1595, 1517, 1484, 1456, 1428, 1108, 1058, 1028, 815, 765, 707; HRMS (ESI-TOF) calcd. for C₂₇H₁₉Cl³⁵NO₄ [M+H]⁺ 456.0997, found: 456.0995.

Methyl-__3-fluoro-5-phenyl-dibenzo[b,e][1,4]oxazepin-11(5*H*)-one-7-carboxylate (4q)

White solid; <u>yield: 0.32g (87%);</u> m. p.167~169°C; ¹H NMR (400 MHz, DMSO-*d₆*) δ: ppm 8.22 (d, J = 2.00 Hz, 1H), 8.01 (dd, $J_I = 8.40$ Hz, $J_2 = 2.00$ Hz, 1H), 7.95-7.99 (m, 1H), 7.71 (dd, $J_I = 8.40$ Hz, $J_2 = 2.40$ Hz, 1H), 7.59 (d, J = 8.40 Hz, 1H), 7.41-7.46 (m, 1H), 7.23 (t, J = 7.20 Hz, 2H), 6.91 (t, J = 7.20 Hz, 1H), 6.71 (d, J = 8.00 Hz, 2H), 3.87 (s, 3H); ¹³C NMR (100 MHz, DMSO-*d₆*) δ: ppm 166.7 (C=O), 164.2 (C=O), 163.0 (d, ¹ $J_{CF} = 235.2$ Hz, C-a), 152.8, 147.8 (d, ³ $J_{CF} = 11.5$ Hz, C-e), 145.2, 136.4 (d, ³ $J_{CF} = 10.7$ Hz, C-c), 136.1, 131.1, 130.1, 129.5, 128.2, 122.8, 122.7 (d, ⁴ $J_{CF} = 3.0$ Hz, C-d), 120.4, 116.0 (d, ² $J_{CF} = 22.3$ Hz, C-f), 115.7 (d, ² $J_{CF} = 22.7$ Hz, C-b), 113.1, 52.5; IR (KBr) ν_{max} /cm⁻¹ 3114, 3090, 3054, 2951, 2844, 1746, 1726, 1595, 1496, 1425, 1412, 1330, 1151, 1099, 1042, 765, 750, 710, 692; HRMS (ESI-TOF) calcd. for C₂₁H₁₄FNNaO₄ [M+Na]⁺ 386.0799, found: 386.0791.

Methyl-_5-Phenyl-2-3-Nitro-dibenzo[b,e][1,4]oxazepin-11(5*H*)-one-7-carboxylate (4r)

Yellow solid; <u>yield: 0.30g (79%);</u> m. p. >200°C; ¹H NMR (400 MHz, DMSO- d_6) δ : ppm 8.63 (d, J = 2.8 Hz, 1H), 8.48 (dd, $J_1 = 9.20$ Hz, $J_2 = 2.80$ Hz, 1H), 8.18 (d, J =1.60 Hz, 1H), 8.00 (dd, $J_1 = 8.80$ Hz, $J_2 = 2.00$ Hz, 1H), 7.82 (d, J = 8.80 Hz, 1H), 7.61 (d, J = 8.40 Hz, 1H), 7.35 (t, J = 7.60 Hz, 2H), 7.09 (t, J = 7.60 Hz, 1H), 7.02 (d, J = 8.00 Hz, 2H), 3.85 (s, 3H); ¹³C NMR (100 MHz, DMSO- d_6) δ : ppm 164.6 (C=O), 162.0 (C=O), 151.3, 144.5, 143.5, 135.9, 129.8, 129.7, 129.7, 129.6, 129.5, 129.2, 128.1, 127.6, 124.8, 123.1, 122.7, 116.8, 52.4; IR (KBr) $v_{\text{max}}/\text{cm}^{-1}$ 3080, 3046, 2999, 2954, 2833, 1754, 1717, 1608, 1574, 1524, 1496, 1476, 1238, 1190, 1128, 1106, 1067; 773, 747, 707, 689; HRMS (ESI-TOF) calcd. for $C_{21}H_{15}N_2O_6$ [M+H]⁺ 391.0925, found: 391.0925.

III-3 Characterization data for N-arylated acridones (Table 5 and Scheme 2).

10-((2-hydroxyl-4-methoxycarbonyl)phenyl)-acridin-9(10*H***)-one (5a) Yellow crystal; <u>yield: 0.30g (87%);</u> m. p. >200°C; ¹H NMR (400 MHz, DMSO-***d***₆) δ: ppm 11.08 (s, 1H), 8.38 (dd, J_I = 8.00 Hz, J_2 = 1.20 Hz, 2H), 8.14 (dd, J_I = 8.40 Hz, J_2 = 2.40 Hz, 1H), 7.96 (d, J = 2.40 Hz, 1H), 7.63-7.68 (m, 2H), 7.32-7.36 (m, 3H), 6.81(d, J = 8.40 Hz, 2H), 3.81 (s, 3H); ¹³C NMR (100 MHz, DMSO-***d***₆) δ: ppm 176.8 (C=O), 165.2 (C=O), 159.1, 142.4, 134.0, 132.8, 132.7, 126.4, 124.5, 122.3, 121.6, 121.4, 118.0, 116.4, 52.0; IR (KBr) v_{max}/cm⁻¹ 3414, 3130, 3070, 2945, 2836, 1713, 1631, 1609, 1594, 1569, 1484, 1276, 1204, 1161, 1087, 848, 751, 667; HRMS (ESI-TOF) calcd. for C₂₁H₁₅NNaO₄ [M+Na]⁺ 368.0893, found: 368.0887.**

2-methyl-10-((2-hydroxyl-4-methoxycarbonyl)phenyl)-acridin-9(10*H***)-one (5b) Yellow crystal; <u>yield</u>: 0.31g (87%); m. p.>200°C; ¹H NMR (400 MHz, DMSO-d_6) \delta: ppm 11.02 (s, 1H), 8.35 (dd, J_1 = 8.00 Hz, J_2 = 1.20 Hz, 1H), 8.15 (s, 1H), 8.11 (dd, J_1 = 8.80 Hz, J_2 = 2.00 Hz, 1H), 7.90 (d, J = 2.00 Hz, 1H), 7.59 (t, J = 2.00 Hz, 1H),** 7.45 (dd, J_1 = 8.80 Hz, J_2 = 2.00 Hz, 1H), 7.27-7.33 (m, 2H), 6.77 (d, J = 8.80 Hz, 1H), 6.70 (d, J = 8.40 Hz, 1H), 3.79 (s, 3H), 2.41 (s, 3H); ¹³C NMR (100 MHz, DMSO- d_6) δ : ppm 176.7 (C=O), 165.2 (C=O), 159.1, 159.1, 142.3, 140.6, 135.2, 133.7, 132.7, 132.6, 130.9, 126.4, 125.6, 124.6, 122.3, 121.4, 121.2, 117.9, 116.5, 116.3, 52.0, 20.3; IR (KBr) v_{max} /cm⁻¹ 3417, 3066, 3024, 2951, 2839, 1717, 1636, 1614, 1591, 1566, 1499, 1479, 1464, 1435, 1206, 1159, 1109, 1087, 850, 805, 770, 756; HRMS (ESI-TOF) calcd. for C₂₂H₁₇NNaO₄ [M+Na]⁺ 382.1050, found: 382.1059.

2-methoxyl-10-((2-hydroxyl-4-methoxycarbonyl)phenyl)-acridin-9(10*H***)-one (5c) Yellow crystal; <u>yield: 0.33g (89%);</u> m. p. >200°C; ¹H NMR (400 MHz, DMSO-***d***₆) δ: ppm 11.06 (s, 1H), 8.37 (dd, J_I = 8.40 Hz, J_2 = 1.60 Hz, 1H), 8.13 (dd, J_I = 8.40 Hz, J_2 = 2.00 Hz, 1H), 7.93 (d, J = 2.40 Hz, 1H), 7.78 (d, J = 3.20 Hz, 1H), 7.60-7.65 (m, 1H), 7.29-7.33 (m, 3H), 6.77-6.81 (m, 2H), 3.88 (s, 3H), 3.81 (s, 3H); ¹³C NMR (100 MHz, DMSO-***d***₆) δ: ppm 176.3 (C=O), 165.2 (C=O), 159.1, 154.3, 141.9, 137.2, 133.6, 132.8, 132.6, 126.4, 124.6, 124.0, 122.3 121.9, 121.3, 120.6, 118.3, 117.9, 116.3, 105.8, 55.5, 52.0; IR (KBr) v_{max}/cm⁻¹ 3403, 3052, 2996, 2942, 2905, 2834, 1711, 1612, 1590, 1543, 1500, 1463, 1428, 1164, 1121, 1030, 862, 822, 754, 694; HRMS (ESI-TOF) calcd. for C₂₂H₁₈NO₅ [M+H]⁺ 376.1179, found: 376.1184.**

2-fluoro-10-((2-hydroxyl-4-methoxycarbonyl)phenyl)-acridin-9(10*H***)-one (5d) Yellow crystal; <u>yield: 0.26g (72%);</u> m. p. >200°C; ¹H NMR (400 MHz, DMSO-***d***₆) δ: ppm 11.12 (s, 1H), 8.37 (dd, J_I = 8.00 Hz, J_2 = 1.60 Hz, 1H), 8.15 (dd, J_I = 8.40 Hz, J_2 = 2.00 Hz, 1H), 8.03 (dd, J_I = 8.80 Hz, J_2 = 2.80 Hz, 1H), 8.00 (d, J = 2.00 Hz, 1H), 7.65-7.70 (m, 1H), 7.54-7.60 (m, 1H), 7.34-7.37 (m, 2H), 6.88 (dd, J_I = 9.20 Hz, J_2 = 4.40 Hz, 1H), 6.83 (d, J = 8.80 Hz, 1H), 3.81 (s, 3H); ¹³C NMR (100 MHz, DMSO-***d***₆) δ: ppm 176.2 (C=O), 165.2, 159.0, 157.2 (d, ¹J_{CF} = 239.6 Hz, C-a), 142.3, 139.2, 134.2, 132.8, 132.7, 126.3, 124.4, 122.5 (d, ²J_{CF} = 24.7 Hz, C-b), 122.4, 122.1 (d, ³J_{CF} = 6.4 Hz, C-e), 121.8, 120.6, 119.3 (d, ³J_{CF} = 7.4Hz, C-c), 118.0, 116.5, 110.3 (d, ²J_{CF} = 22.2 Hz, C-f), 52.0; IR (KBr) v_{max}/cm⁻¹ 3473, 3015, 2951, 2833, 1720, 1618, 1601, 1576, 1495, 1480, 1459, 1433, 1276, 1195, 1159, 1149, 1085, 1036, 832, 813, 751, 692; HRMS (ESI-TOF) calcd. for C₂₁H₁₄FNNaO₄ [M+Na]⁺ 386.0799, found: 386.0791.**

2-chloro-10-((2-hydroxyl-4-methoxycarbonyl)phenyl)-acridin-9(10*H***)-one (5e) Yellow crystal; <u>yield</u>: 0.30g (78%); m. p.>200°C;¹H NMR (400 MHz, DMSO-***d***₆) δ: ppm 11.12 (s, 1H), 8.37 (d, J = 8.00 Hz, 1H), 8.28 (d, J = 2.40 Hz, 1H), 8.14 (dd, J_I = 8.40 Hz, J_2 = 2.00 Hz, 1H), 8.00 (d, J = 2.00 Hz, 1H), 7.65-7.70 (m, 2H), 7.37 (d, J = 7.60 Hz, 1H), 7.34 (d, J = 8.40 Hz, 1H), 6.85 (d, J = 9.20 Hz, 1H), 6.82 (d, J = 8.80 Hz, 1H), 3.81 (s, 3H); ¹³C NMR (100 MHz, DMSO-***d***₆) δ: ppm 175.9 (C=O), 165.2 (C=O), 158.9, 142.3, 141.1, 134.4, 133.8, 132.9, 132.7, 126.4, 126.2, 125.1, 124.2, 122.4, 122.2, 122.1, 121.2, 119.0, 118.0, 116.6, 52.0; IR (KBr) v_{max}/cm⁻¹ 3508, 3171, 2952, 2839, 1714, 1625, 1597, 1574, 1508, 1487, 1457, 1437, 1195, 1166, 1125, 1085, 896, 855, 810, 771, 754, 692; HRMS (ESI-TOF) calcd. for C₂₁H₁₅Cl³⁵NO₄ [M+H]⁺ 380.0684, found: 380.0692.**

2-bromo-10-((2-hydroxyl-4-methoxycarbonyl)phenyl)-acridin-9(10*H***)-one (5f**) Yellow crystal; <u>yield: 0.35g (82%);</u> m. p.>200°C;¹H NMR (400 MHz, DMSO-*d*₆) δ: ppm 11.10 (s, 1H), 8.40 (d, J = 2.40 Hz, 1H), 8.35 (dd, $J_I = 8.00$ Hz, $J_2 = 1.20$ Hz, 1H), 8.12 (dd, $J_I = 8.80$ Hz, $J_2 = 2.00$ Hz, 1H), 7.96-7.98 (m, 1H), 7.76 (dd, $J_I = 9.12$ Hz, $J_2 = 2.48$ Hz, 1H), 7.64-7.68 (m, 1H), 7.30-7.36 (m, 2H), 6.76-6.81 (m, 2H), 3.79 (s, 3H); ¹³C NMR (100 MHz, DMSO-*d*₆) δ: ppm 175.8 (C=O), 165.2 (C=O), 158.9, 142.4, 141.4, 136.4, 134.4, 132.9, 132.7, 128.2, 126.5, 124.2, 122.7, 122.4, 122.1, 121.3, 119.2, 118.0, 116.6, 114.0, 52.0; IR (KBr) v_{max} /cm⁻¹ 3178, 2951, 1744, 1711, 1626, 1595, 1574, 1491, 1455, 1437, 1320, 1279, 1088, 1057, 1024, 898, 853, 815, 768, 752; HRMS (ESI-TOF) calcd. for C₂₁H₁₅BrNO₄ [M+H]⁺ 424.0179, found: 424.0183.

2-nitro-10-((2-hydroxyl-4-methoxycarbonyl)phenyl)-acridin-9(10*H***)-one (5h) Yellow crystal; <u>yield: 0.29g (75%);</u>m. p. >200°C;¹H NMR (400 MHz, DMSO-d_6) δ: ppm 11.26 (s, 1H), 9.09 (d, J = 2.80 Hz, 1H), 8.38-8.42 (m, 2H), 8.16 (dd, J_I = 8.40 Hz, J_2 = 1.20 Hz, 1H), 8.09 (d, J = 1.20 Hz, 1H), 7.72 (t, J = 7.60 Hz, 1H), 7.45 (t, J = 7.60 Hz, 1H), 7.36 (d, J = 8.40 Hz, 1H), 7.00 (d, J = 9.20 Hz, 1H), 6.87 (d, J = 8.40 Hz, 1H), 3.82 (s, 3H); ¹³C NMR (100 MHz, DMSO-d_6) δ: ppm 176.5 (C=O), 165.2 (C=O), 158.7, 145.9, 142.4, 141.3, 135.1, 133.2, 132.5, 127.9, 126.6, 123.9, 123.4, 122.9, 122.5, 121.7, 120.4, 118.3, 118.1, 117.2, 52.1; HRMS (ESI-TOF) calcd. for** C₂₁H₁₅N₂O₆ [M+H]⁺ 391.0925, found: 391.0925.

2-(4-chlorophenyl)-10-((2-hydroxyl-4-methoxycarbonyl)phenyl)-acridin-9(10*H*)one (5p)

Yellow crystal; <u>yield: 0.39g (85%);</u> m. p. >200°C; ¹H NMR (400 MHz, DMSO-*d*₆) δ: ppm 11.11(s, 1H), 8.58 (d, J = 2.40 Hz, 1H), 8.38 (dd, $J_I = 8.00$ Hz, $J_2 = 1.20$ Hz, 1H), 8.15 (dd, $J_I = 8.40$ Hz, $J_2 = 2.00$ Hz, 1H), 7.99 (d, J = 2.00 Hz, 1H), 7.97 (dd, $J_I =$ 8.80 Hz, $J_2 = 2.00$ Hz, 1H), 7.75 (d, J = 8.80 Hz, 2H), 7.63-7.67 (m, 1H), 7.54 (d, J =8.40 Hz, 2H), 7.33-7.36 (m, 2H), 6.88 (d, J = 8.80 Hz, 1H), 6.81 (d, J = 8.80 Hz, 1H), 3.80(s, 3H); ¹³C NMR (100 MHz, DMSO-*d*₆) δ: ppm 176.8 (C=O), 165.2 (C=O), 159.0, 142.3, 141.9, 137.8, 134.1, 132.7, 132.3, 132.1, 129.1, 128.8, 128.2, 127.7, 126.5, 124.4, 123.7, 122.3, 121.9, 121.5, 118.0, 117.4, 116.5, 113.0, 52.0; IR (KBr) v_{max} /cm⁻¹ 3459, 3189, 3055, 2993, 2947, 1742, 1715, 1594, 1573, 1508, 1482, 1461, 1321, 1283, 1207, 1162, 1095, 814, 767, 711, 691; HRMS (ESI-TOF) calcd. for C₂₇H₁₉ClNO₄ [M+H]⁺ 456.0997, found: 456.0995.

3-fluoro-10-((2-hydroxyl-4-methoxycarbonyl)phenyl)-acridin-9(10*H***)-one (5q) Yellow crystal; <u>yield: 0.30g (83%);</u> m. p.>200°C; ¹H NMR (400 MHz, DMSO-***d***₆) δ: ppm 11.14 (s, 1H), 8.42-8.46 (m, 1H), 8.36 (dd, J_1 = 8.00 Hz, J_2 = 1.20 Hz, 1H), 8.14 (dd, J_1 = 8.00 Hz, J_2 = 2.00 Hz, 1H), 8.00 (d, J = 2.00 Hz, 1H), 7.64-7.68 (m, 1H), 7.33-7.38 (m, 2H), 7.17-7.22 (m, 1H), 6.79 (d, J = 8.80 Hz, 1H), 6.45 (d, J = 1.20 Hz,** 1H), 3.81 (s, 3H); ¹³C NMR (100 MHz, DMSO- d_6) δ : ppm 175.9 (C=O), 165.2 (d, ¹ J_{CF} = 248.3 Hz, C-a), 165.1 (C=O), 158.7, 144.1 (d, ³ J_{CF} = 11.9 Hz, C-e), 142.5, 134.0, 132.8, 132.5, 130.0 (d, ³ J_{CF} = 11.1 Hz, C-c), 129.9, 126.3, 124.0, 122.3, 122.0, 121.3, 118.3, 117.9, 116.3, 110.3 (d, ² J_{CF} = 23.3 Hz, C-f), 101.8 (d, ² J_{CF} = 26.8 Hz, C-b), 51.8; IR (KBr) v_{max} /cm⁻¹ 3142, 3083, 2954, 2833, 1714, 1636, 1611, 1597, 1571, 1504, 1462, 1434, 1325, 1283, 1210, 1157, 1084, 840, 756, 666; HRMS (ESI-TOF) calcd. for C₂₁H₁₄FNNaO₄ [M+Na]⁺ 386.0799, found: 386.0793.

III-4 Characterization Data for N-aryl 7, 12-dihydrodibenzo[b,e][1,4]oxa zocin-6(*H*)-ones and dibenzo[b,f]azepin-10(11*H*)-ones

Methyl_-12-(4-fluorophenyl)-6-oxo-7,12-dihydro-6*H*-dibenzo[b,e][1,4]oxazocine-2-_carboxylate (6d)

White crystal; <u>yield: 0.32g (85%);</u> m. p. 78-80 °C; ¹H NMR (400 MHz, DMSO-*d*₆) (T = 323 K) δ: ppm 8.08 (dd, J_I = 8.40 Hz, J_2 = 2.00 Hz, 1H), 7.96 (d, J = 2.00 Hz, 1H), 7.56 (d, J = 8.40 Hz, 1H), 7.51-7.55 (m, 1H), 7.40 (t, d, J = 8.40 Hz, 2H), 7.21-7.25 (m, 1H), 6.94-6.98 (m, 2H), 6.33-6.37 (m, 2H), 3.82 (s, 3H), 3.56 (s, 2H); ¹³C NMR (100 MHz, DMSO-*d*₆) δ: ppm 169.4 (C=O), 165.3 (C=O), 157.0 (d, ¹ J_{CF} = 235.4 Hz, C-a), 156.0, 143.0, 142.2, 134.9, 133.5, 131.5, 131.4, 131.2, 129.6, 129.3,127.4, 126.7, 121.2, 116.6 (d, ³ J_{CF} = 7.8 Hz, C-c), 116.0 (d, ² J_{CF} = 22.5 Hz, C-b), 52.8, 37.8; IR (KBr) v_{max} /cm⁻¹ 3053, 2951, 2867, 2842, 1776, 1720, 1605, 1580, 1501, 1437, 1246, 1215, 1117, 1075, 802, 764, 744, 711; HRMS (ESI-TOF) calcd. for C₂₁H₁₇FNO₄ [M+H]⁺ 378.1136, found: 378.1143.

Methyl_-12-(4-chlorophenyl)-6-oxo-7,12-dihydro-6*H*-dibenzo[b,e][1,4]oxazocine_-2-carboxylate (6e)

White crystal; <u>yield: 0.35g (89%);</u> m. p. 86-88 °C; ¹H NMR (400 MHz, DMSO-*d₆*) (T = 323 K) δ: ppm 8.12 (dd, J_1 = 8.40 Hz, J_2 = 2.00 Hz, 1H), 7.98 (d, J = 2.00 Hz, 1H), 7.59 (d, J = 8.40 Hz, 1H), 7.57-7.58 (m, 1H), 7.43-7.46 (m, 2H), 7.27-7.31 (m, 1H), 7.17-7.19 (m, 2H), 6.34-6.37 (m, 2H), 3.84 (s, 3H), 3.60 (s, 2H); ¹³C NMR (100 MHz, DMSO-*d₆*) δ: ppm 169.3 (C=O), 165.3 (C=O), 155.8, 145.5, 141.5, 135.0, 133.3, 131.8, 131.5, 130.9, 129.7, 129.5, 129.3, 127.7, 127.1, 124.3, 121.4, 116.4, 52.9, 37.9; IR (KBr) v_{max} /cm⁻¹ 3080, 3031, 2977, 2954, 2925, 2853, 1776, 1720, 1594, 1491, 1437, 1318, 1248, 1221, 1193, 1174, 1110, 884, 867, 855, 818, 764, 741, 721; HRMS (ESI-TOF) calcd. for C₂₂H₁₇Cl³⁵NO₄ [M+H]⁺ 394.0841, found: 394.0847.

Methyl____8-fluoro-5-((2-hydroxyl-4-methoxycarbonyl)phenyl)-5*H*-dibenzo[b,f]_ azepin-10(11*H*)-one (7d)

Yellow crystal; <u>yield: 0.29g (78%);</u> m. p. 184-186 °C; ¹H NMR (400 MHz, DMSO- d_6) δ : ppm 11.24 (s, 1H), 8.08 (d, J = 2.00 Hz, 1H), 7.97 (dd, $J_1 = 8.40$ Hz, $J_2 = 2.00$ Hz, 1H), 7.57 (dd, $J_1 = 9.20$ Hz, $J_2 = 3.20$ Hz, 1H), 7.30-7.39 (m, 2H), 7.19-7.23 (m, 4H), 6.82-6.85 (m, 1H), 4.08 (s, 2H), 3.81 (s, 3H); ¹³C NMR (100 MHz, DMSO- d_6) δ : ppm 188.2 (C=O), 165.4 (C=O), 159.2, 155.0 (d, ¹ $J_{CF} = 236.4$ Hz, C-a), 144.0, 143.7, 133.4, 131.4, 128.9, 128.9, 127.4, 126.3, 124.6 (d, ³ $J_{CF} = 4.7$ Hz, C-c), 123.5, 123.5, 121.6, 121.1 (d, ${}^{3}J_{CF} = 6.9$ Hz, C-e),120.9 (d, ${}^{2}J_{CF} = 23.0$ Hz, C-f), 117.3, 114.4 (d, ${}^{2}J_{CF} = 22.6$ Hz, C-b), 51.9, 48.2; IR (KBr) v_{max} /cm⁻¹ 3082, 2951, 1720, 1647, 1604, 1477, 1418, 1302, 1254, 1202, 1152, 1120, 1104, 1085, 941, 884, 836, 809, 768, 755, 711, 651; HRMS (ESI-TOF) calcd. for C₂₁H₁₇FNO₄ [M+H]⁺ 378.1136, found: 378.1143.

Methyl-8-chloro-5-((2-hydroxyl-4-methoxycarbonyl)phenyl)-5*H*dibenzo[b,f]azepin-10(11*H*)-one (7e)

Yellow crystal; <u>yield: 0.31g (80%);</u> m. p. >200°C; ¹H NMR (400 MHz, DMSO-*d₆*) δ: ppm 11.26 (s, 1H), 8.06 (d, J = 1.60 Hz, 1H), 7.97 (dd, $J_I = 8.80$ Hz, $J_2 = 2.00$ Hz, 1H), 7.80 (d, J = 2.80 Hz, 1H), 7.44 (dd, $J_I = 9.20$ Hz, $J_2 = 2.80$ Hz, 1H), 7.38 (d, J = 6.80 Hz, 1H), 7.16-7.26 (m, 4H), 6.80 (d, J = 9.20 Hz, 1H), 4.06 (s, 2H), 3.81 (s, 3H); ¹³C NMR (100 MHz, DMSO-*d₆*) δ: ppm 187.8 (C=O), 165.3 (C=O), 159.0, 145.8, 143.2, 133.2, 132.6, 131.5, 131.0, 128.9, 128.6, 128.5, 127.4, 126.4, 124.9, 123.4, 122.8, 121.6, 120.9, 117.3, 51.9, 48.2; IR (KBr) v_{max} /cm⁻¹ 3082, 3023, 2947, 1721, 1645, 1592, 1467, 1433, 1405, 1296, 1249, 1190, 1157, 1122, 988, 953, 900, 839, 812, 770, 752; HRMS (ESI-TOF) calcd. for C₂₂H₁₇CINO₄ [M+H]⁺ 394.0841, found: 394.0847.

IV ¹H NMR and ¹³C NMR spectra of compounds

IV^{-1} 1H NMR and ^{13}C NMR spectra of intermediate 3a and 3b

[¹H NMR and ¹³C NMR spectrum of 3a in DMSO-*d*₆]

13CNMR spectrum of sample E-ZESM363D

[¹H NMR and ¹³C NMR spectrum of 3b in DMSO-*d*₆]

1HNMR spectrum of sample E-ZESM377B

1HNMR spectrum of sample E-ZESM377B

S29

$IV\mathchar`-2$ 1H NMR and ^{13}C NMR spectra of products

[¹H NMR and ¹³C NMR spectrum of 4a in DMSO-*d*₆]

[¹H NMR and ¹³C NMR spectrum of 4b in DMSO-*d*₆]

1HNMR spectrum of sample H-ZESM361

S32

[¹H NMR and ¹³C NMR spectrum of 4d in DMSO-*d*₆]

1HNMR spectrum of sample E-ZESpM379

1HNMR spectrum of sample E-ZESpM379

[¹H NMR and ¹³C NMR spectrum of 4f in DMSO-*d*₆]

1HNMR spectrum of sample E-ZESpM443

[¹H NMR and ¹³C NMR spectrum of 4h in DMSO-*d*₆]

13CNMR spectrum of sample E-ZESM390

[¹H NMR and ¹³C NMR spectrum of 4i in DMSO-*d*₆]

mdd

Integral

11

q

000 . 000

0

2

1

3.0522 2.9565 2.0360 1.0464 1.0138 1.0777 1.0777 4.1940 1.0250 1.0000 ppm 12 10 Ţ Ţ

1HNMR spectrum of sample E-ZESMM359-20140328

13CNMR spectrum of sample E-ZESM413

[¹H NMR and ¹³C NMR spectrum of 4k in DMSO-*d*₆]

1HNMR spectrum of sample E-ZESpM408

1HNMR spectrum of sample E-ZESpM408

[¹H NMR and ¹³C NMR spectrum of 4l in DMSO-*d*₆]

1HNMR spectrum of sample E-ZESM379

[¹H NMR and ¹³C NMR spectrum of 4m in DMSO-*d*₆]

13CNMR spectrum of sample E-ZESMM390

[¹H NMR and ¹³C NMR spectrum of 4n in DMSO-*d*₆]

1HNMR spectrum of sample E-ZESMM413

S51

[¹H NMR and ¹³C NMR spectrum of 40 in DMSO-*d*₆]

[¹H NMR and ¹³C NMR spectrum of 4p in DMSO-*d*₆]

1HNMR spectrum of sample E-ZESM445

[¹H NMR and ¹³C NMR spectrum of 4q in DMSO-*d*₆]

ppm (f1)

S59

13CNMR Spectrum of sample E-ZESM363B

[¹H NMR and ¹³C NMR spectrum of 5a in DMSO-*d*₆]

1HNMR spectrum of sample H-ZESM345

13CNMR spectrum of sample H-ZESM345

[¹H NMR and ¹³C NMR spectrum of 5b in DMSO-*d*₆]

1HNMR spectrum of sample F-ZESM359

[¹H NMR and ¹³C NMR spectrum of 5d in DMSO-*d*₆]

1HNMR spectrum of sample H-ZESPM363

1HNMR spectrum of sample H-ZESPM363

S68

13CNMR spectrum of sample H-ZESPM363

13CNMR spectrum of sample H-ZESPM363

Т

| 111.0

110.0

| 109.0

| 112.0

[¹H NMR and ¹³C NMR spectrum of 5e in DMSO-*d*₆]

[¹H NMR and ¹³C NMR spectrum of 5f in DMSO-*d*₆]

1HNMR spectrum of sample H-ZESpM443

[¹H NMR and ¹³C NMR spectrum of 5h in DMSO-*d*₆]

[¹H NMR and ¹³C NMR spectrum of 5p in DMSO-*d*₆]

1HNMR spectrum of sample H-ZESM445

[¹H NMR and ¹³C NMR spectrum of 5q in DMSO-*d*₆]

1HNMR spectrum of sample H-ZESM363B

S77

¹H NMR and ¹³C NMR spectrum of 6d in DMSO- d_6 , T = 298 K]

13CNMR Spectrum of sample E-ZESPM377

S83

[¹H NMR spectrum of 6d in DMSO- d_6 and in D₂O, T = 323K]

1HNMR spectrum of sample E-ZESPM377(in DMSO-d6 and D20, T=323K)

[¹H NMR spectrum of 6e in DMSO- d_6 and D₂O, T = 298K]

1HNMR spectrum of sample E-ZESPM377 in DMSO-d6 and D2O(T=323K)

[¹H NMR and ¹³C NMR spectrum of 7d in DMSO-*d*₆]

S91

[¹H NMR and ¹³C NMR spectrum of 7e in DMSO-*d*₆]

1HNMR spectrum of sample H-ZESPM37793

13CNMR spectrum of sample H-ZESPM377393

ppm 200 180 160 140 120 100 80 60 40 20 0