Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2015

[Supporting Information]

The effects of Au nanoparticles size (5-60 nm) and shape (sphere, rod, cube) over electronic states and photocatalytic activities of TiO₂ studied by far- and deep-ultraviolet spectroscopy

Ichiro Tanabe,* Takayuki Ryoki and Yukihiro Ozaki*

Figure S1. Normalized absorption spectra of (a) 5 nm-Au (b) 10 nm-Au, (c) 40-nm Au, and (d) 60 nm-Au colloids.

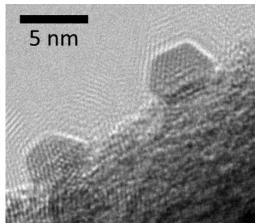


Figure S2. A typical HRTEM image of the Au nanosphere (5 nm) on TiO₂. This image was measured on a Tecnai G2 transmission electron microscope operating at 200 kV.

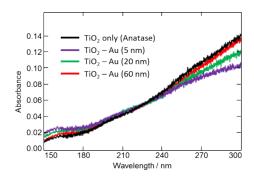


Figure S3. ATR spectra of anatase TiO_2 with or without Au nanospheres (5, 20, and 60 nm). The amounts of Au nanospheres are regulated to the almost same weight (~1.3 \times 10⁻⁴ g on 1 g TiO_2).

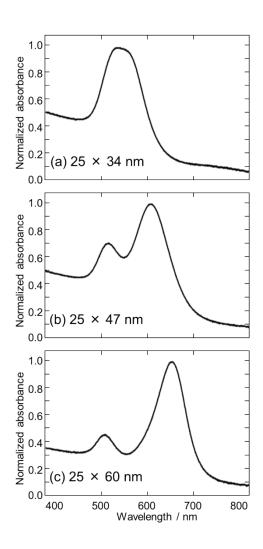
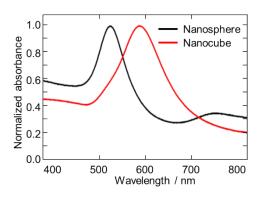



Figure S4. Normalized absorption spectra of Au nanorods. Sizes of Au nanorods are 25 nm \times (a) 34 nm, (b) 47 nm, and (c) 60 nm, respectively.

Figure~S5.~Normalized~absorption~spectra~of~Au~nanospheres~(black)~and~Au~nanocubes~(red).

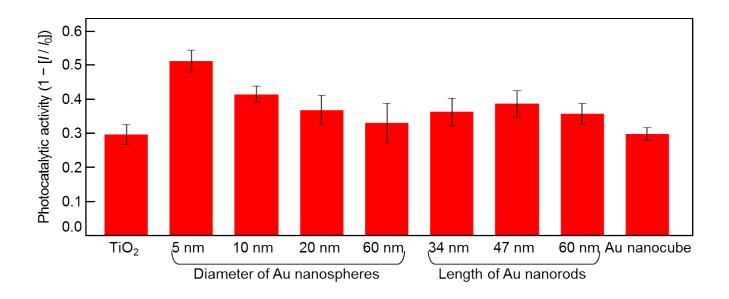


Figure S6. Photocatalytic activities $(1 - [I/I_0])$ of (a) anatase TiO_2 with and without Au nanoparticles.