Selective Synthesis of Polyfunctionalized Hydroisoquinoline Derivatives via Three-Component Domino Reaction

Juan-Juan Zhang^a, Jun-Die Hu^a, Cheng-Pao Cao^a, Guo-Lan Dou^b, Lei Fu^a, Zhi-Bin Huang^a, Da-Qing Shi^{*,a}

^a Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China. ^bSchool of Safety Engineering, China University of Mining & Technology, Xuzhou 221116, P. R. China E-mail: dqshi@suda.edu.cn

Table of Contents

1. Experimental section	S2
2. General procedure	S2
3. Analytical Data of Polyfunctionalized Hydroisoquinoline	
Derivatives	S3
4. NMR Spectra of Products	S15

1. Experimental section

Melting points were determined using an XT-5 melting point apparatus and are uncorrected. IR spectra were recorded (cm⁻¹) with a Varian F-1000 spectrometer, using KBr. ¹H NMR (400 MHz) and ¹³C NMR (100 MHz) spectra were recorded using a Varian Inova-400 MHz spectrometer, in DMSO- d_6 solution. J values are in hertz. Chemical shifts are expressed in parts million downfield from TMS as an internal standard. HRMS of all the compounds were obtained using a Bruker MicrOTOF-QII mass spectrometer with an ESI resource. General Methods. Microwave irradiation experiments were conducted in an Initiator 2.5 Microwave system (Biotage, Uppsala, Sweden). The reaction temperatures were measured using an infrared detector during the microwave heating stages. All chemicals and solvents were used without further purification, unless otherwise stated.

2. General procedure

General procedure for the synthesis of compounds 4

Glutaraldehyde (1, 50% solution, 0.200 g, 1 mmol), malononitrile (2, 0.132 g, 2 mmol) and acyclic 1,3-dicarbonyl compounds (3, 1 mmol) were placed in a 10 mL Initiator reactor vial, followed by NaOH (0.004 g, 0.1 mmol) and EtOH (2 mL). The reaction vial was then sealed and prestirred for 10 s before being irradiated in the microwave (time, 10 min; temperature, 100 °C; absorption level, high; fixed hold time) until TLC (3:1 mixture of petroleum ether and acetone) revealed the complete consumption of the starting materials. The reaction mixture was then cooled to room temperature and diluted with cold water (20 mL) to give a precipitate, which was collected by B üchner filtration. The solid material was then purified by recrystallization from 95% EtOH to afford the desired product. The products were further identified using FTIR and NMR spectroscopies, and HRMS.

General procedure for the synthesis of compounds 6

Glutaraldehyde (1, 50% solution, 0.200 g, 1 mmol), malononitrile (2, 0.132 g, 2 mmol) and cyclic 1,3-dicarbonyl compounds (5, 1 mmol) were placed in a 10-mL Initiator reactor vial, followed by NaOH (0.004 g, 0.1 mmol) and and EtOH (2 mL)

The reaction vial was then sealed and prestirred for 10 s before being irradiated in the microwave (time, 10 min; temperature, 100 °C; absorption level, high; fixed hold time) until TLC (petroleum ether/ acetone 3/1) revealed the complete consumption of the starting materials. The reaction mixture was then cooled to room temperature and diluted with cold water (20 mL) to give a precipitate, which was collected by B üchner filtration. The solid material was then purified by recrystallization from 95% EtOH to afford the desired product. The products were further identified using FTIR and NMR spectroscopies, and HRMS.

3. Analytical data of polyfunctionalized hydroisoquinoline derivatives

Crystal date of compound 4a and 6a

4a

6a

Table 1 Crystallographic Data of Compound 4a				
Empirical formula	$C_{17}H_{18}N_4O_3$			
Formula weight	326.35			
Temperature	298(2) K			
Wavelength	0.71073 Å			
Crystal system	Triclinic			
space group	P-1			
Unit cell dimensions	a = 7.9219(8) Å	$\alpha = 108.694(2)^{\circ}$		
	b = 10.2365(13) Å	$\beta = 105.2940(10)^{\circ}$		
	c = 11.9557(14) Å	$\gamma = 100.3700(10)$ °		
Volume	847.90(17) Å ³			
Z	2			
Calculated density	1.278 Mg/m^3			
Absorption coefficient	0.090 mm^{-1}			
F(000)	344			

Crystal size	0.32 ×0.30 ×0.23 mm
Theta range for data collection	2.78 to 25.02 °
Limiting indices	$-9 \le h \le 8, -12 \le k \le 9, -9 \le l \le 14$
Independent reflections	2490 [R(int) = 0.0383]
Data / restraints / parameters	2940 / 0 / 220
Goodness-of-fit on F2	0.969
Final R indices $[I > 2\sigma(I)]$	$R_1 = 0.0549, wR_2 = 0.1125$
R indices (all data)	$R_1 = 0.1167, wR_2 = 0.1396$
Largest diff. peak and hole	0.178 and -0.201 e. Å ⁻³

Table 2 Selected bond lengths (Å) of compound **4a**

RONA RONALONATOS	Bond Bond Lengths Bond Bond Lengths	Pond Longths	Bond	Jona
Bond Bond Lengths		I	Lengths	
N(1)-C(5) 1.264(3)	C(1)-C(2)	1.327(4)	C(7)-C(17)	1.417(4)
N(1)-C(6) 1.417(3)	C(1)-C(12)	1.490(4)	C(7)-C(8)	1.514(4)
N(2)-C(6) 1.344(3)	C(2)-C(13)	1.486(4)	C(8)-C(9)	1.535(4)
N(3)-C(17) 1.143(3)	C(2)-C(3)	1.508(4)	C(9)-C(10)	1.521(4)
N(4)-C(16) 1.139(4)	C(3)-C(11)	1.528(4)	C(10)-C(11)	1.510(4)
O(1)-C(5) 1.359(3)	C(3)-C(4)	1.544(4)	C(14)-C(15)	1.502(4)
O(1)-C(1) 1.410(3)	C(4)-C(16)	1.494(4)		
O(2)-C(13) 1.336(3)	C(4)-C(5)	1.513(4)		
O(2)-C(14) 1.445(3)	C(4)-C(8)	1.551(4)		
O(3)-C(13) 1.200(3)	C(6)-C(7)	1.358(4)		

Table 3 Selected bond angles (°) of compound 4a

Angles	()	Angles	()
C(5)-N(1)-C(6)	117.2(2)	O(1)-C(5)-C(4)	118.2(2)
C(5)-O(1)-C(1)	121.4(2)	N(2)-C(6)-C(7)	125.9(3)
C(13)-O(2)-C(14)	117.3(2)	N(2)-C(6)-N(1)	112.0(2)
C(2)-C(1)-O(1)	120.9(3)	C(7)-C(6)-N(1)	122.1(3)
C(2)-C(1)-C(12)	131.3(3)	C(6)-C(7)-C(17)	121.2(3)
O(1)-C(1)-C(12)	107.7(2)	C(6)-C(7)-C(8)	120.3(3)
C(1)-C(2)-C(13)	121.6(3)	C(17)-C(7)-C(8)	118.0(2)
C(1)-C(2)-C(3)	119.3(3)	C(7)-C(8)-C(9)	111.2(2)
C(13)-C(2)-C(3)	118.9(2)	C(7)-C(8)-C(4)	108.5(2)
C(2)-C(3)-C(11)	109.6(2)	C(9)-C(8)-C(4)	112.0(2)
C(2)-C(3)-C(4)	109.7(2)	C(10)-C(9)-C(8)	112.4(3)
C(11)-C(3)-C(4)	112.4(2)	C(11)-C(10)-C(9)	109.3(3)
C(16)-C(4)-C(5)	105.0(2)	C(10)-C(11)-C(3)	112.0(3)
C(16)-C(4)-C(3)	108.6(2)	O(3)-C(13)-O(2)	123.7(3)
C(5)-C(4)-C(3)	111.7(2)	O(3)-C(13)-C(2)	126.8(3)
C(16)-C(4)-C(8)	109.6(2)	O(2)-C(13)-C(2)	109.5(3)

C(5)-C(4)-C(8)	108.5(2)	O(2)-C(14)-C(15)	105.9(3)
C(3)-C(4)-C(8)	113.2(2)	N(4)-C(16)-C(4)	178.3(4)
N(1)-C(5)-O(1)	115.3(2)	N(3)-C(17)-C(7)	177.8(3)
N(1)-C(5)-C(4)	126.4(3)		

Table 1 Crystallographic Data of Compound 6a

Empirical formula	$C_{19}H_{20}N_4O_2$		
Formula weight	336.39		
Temperature	293(2) K		
Wavelength	0.71073 Å		
Crystal system	Monoclinic		
space group	$P2_1/c$		
Unit cell dimensions	$a = 7.7983(8) \text{ Å}$ $\alpha = 90 \circ$		
	$b = 15.7822(14) \text{ Å}$ $\beta = 98.5090(10) \circ$		
	$c = 14.3700(13) \text{ Å} \gamma = 90 \circ$		
Volume	1749.1(3) Å ³		
Z	4		
Calculated density	1.277 Mg/m^3		
Absorption coefficient	0.086 mm^{-1}		
F(000)	712		
Crystal size	$0.23 \times 0.18 \times 0.15 \text{ mm}$		
Theta range for data collection	2.58 to 25.02 °		
Limiting indices	$-9 \le h \le 8, -15 \le k \le 18, -15 \le l \le 17$		
Independent reflections	3081 [R(int) = 0.0546]		
Data / restraints / parameters	3081 / 0 / 228		
Goodness-of-fit on F2	1.032		
Final R indices $[I \ge 2\sigma(I)]$	$R_1 = 0.0578, wR_2 = 0.0975$		
R indices (all data)	$R_1 = 0.1009, wR_2 = 0.1226$		
Largest diff. peak and hole	0.199 and -0.233 e. $Å^{-3}$		

Table 2 Selected	bond lengths	(Å) of	compound	69
Table 2 Selected	boliu lenguis	(A) U	compound	Ua

Bond	Bond Lengths	Bond	Bond Lengths	Bond Bond Lengths	
N(1)-C(1)	1.315(3)	C(3)-C(8)	1.537(4)	C(8)-C(9) 1.531(4)	
N(1)-C(2)	1.373(3)	C(3)-C(4)	1.561(3)	C(9)-C(10) 1.524(4)	
N(2)-C(1)	1.314(3)	C(4)-C(5)	1.511(4)	C(10)-C(11) 1.530(4)	
N(3)-C(16)	1.143(3)	C(4)-C(11)	1.540(4)	C(12)-C(13) 1.487(4)	
N(4)-C(17)	1.143(3)	C(5)-C(6)	1.334(4)	C(13)-C(14) 1.528(4)	
O(1)-C(2)	1.225(3)	C(5)-C(12)	1.493(3)	C(14)-C(18) 1.529(4)	
O(2)-C(12)	1.229(3)	C(6)-C(15)	1.508(3)	C(14)-C(19) 1.534(4)	
C(1)-C(7)	1.539(4)	C(6)-C(7)	1.541(3)	C(14)-C(15) 1.540(3)	
C(2)-C(3)	1.550(4)	C(7)-C(16)	1.478(3)		

Angles	()	Angles	()	
C(1)-N(1)-C(2)	120.4(2)	C(16)-C(7)-C(8)	109.1(2)	-
N(2)-C(1)-N(1)	120.3(3)	C(1)-C(7)-C(8)	105.05(19)	
N(2)-C(1)-C(7)	119.5(2)	C(6)-C(7)-C(8)	114.4(2)	
N(1)-C(1)-C(7)	120.1(2)	C(9)-C(8)-C(3)	112.7(2)	
O(1)-C(2)-N(1)	121.3(3)	C(9)-C(8)-C(7)	115.8(2)	
O(1)-C(2)-C(3)	118.3(3)	C(3)-C(8)-C(7)	104.4(2)	
N(1)-C(2)-C(3)	120.4(2)	C(10)-C(9)-C(8)	114.2(2)	
C(17)-C(3)-C(8)	111.5(2)	C(9)-C(10)-C(11)	111.4(2)	
C(17)-C(3)-C(2)	106.3(2)	C(10)-C(11)-C(4)	110.9(2)	
C(8)-C(3)-C(2)	111.8(2)	O(2)-C(12)-C(13)	121.7(2)	
C(17)-C(3)-C(4)	110.4(2)	O(2)-C(12)-C(5)	119.2(3)	
C(8)-C(3)-C(4)	107.4(2)	C(13)-C(12)-C(5)	119.1(3)	
C(2)-C(3)-C(4)	109.4(2)	C(12)-C(13)-C(14)	114.9(2)	
C(5)-C(4)-C(11)	111.0(2)	C(13)-C(14)-C(18)	109.9(2)	
C(5)-C(4)-C(3)	108.0(2)	C(13)-C(14)-C(19)	110.9(2)	
C(11)-C(4)-C(3)	110.4(2)	C(18)-C(14)-C(19)	108.8(3)	
C(6)-C(5)-C(12)	118.8(2)	C(13)-C(14)-C(15)	107.2(2)	
C(6)-C(5)-C(4)	123.8(2)	C(18)-C(14)-C(15)	109.5(2)	
C(12)-C(5)-C(4)	117.3(2)	C(19)-C(14)-C(15)	110.6(2)	
C(5)-C(6)-C(15)	123.2(2)	C(6)-C(15)-C(14)	112.4(2)	
C(5)-C(6)-C(7)	120.2(2)	N(3)-C(16)-C(7)	177.1(3)	
C(15)-C(6)-C(7)	116.4(2)	N(4)-C(17)-C(3)	178.3(3)	
C(16)-C(7)-C(1)	110.7(2)	C(16)-C(7)-C(6)	112.0(2)	
C(1)-C(7)-C(6)	105.3(2)			

Table 3 Selected bond angles ([°]) of compound **6a**

Ethyl

8-amino-3a¹,7-dicyano-2-methyl-3a,3a¹,4,5,6,6a-hexahyd ropyrano[4,3,2-*ij*]isoquinoline-3- carboxylate (4a)

Yellow solid, 0.245 g, yield 75%; mp 188–190 °C. IR (KBr): 3389, 2964, 2167, 1650, 1638, 1560, 1543, 1323, 1320, 1230, 1175, 1000, 878, 746 cm⁻¹; ¹H NMR (400 MHz, DMSO- d_6) δ = 6.95 (s, 2H, NH₂), 4.30–4.17 (m, 2H, CH₂O), 3.22–3.16 (m, 1H, CH), 2.98–2.94 (m, 1H, CH), 2.38 (s, 3H, CH₃), 1.91–1.82 (m, 2H, 2 × CH), 1.49–1.46 (m, 1H, CH), 1.28–1.25 (m, 4H, CH₃ and CH), 1.04–0.98 (m, 2H, 2 × CH); ¹³C NMR (100 MHz, DMSO- d_6) δ = 196.8, 159.4, 159.1, 156.5, 120.5, 120.4, 117.7, 59.9, 37.8, 35.6, 30.5, 29.6, 28.6, 20.5, 19.4; HRMS (ESI): m/z calcd for C₁₇H₁₉N₄O₃ [(M+H)⁺], 327.1457; found, 327.1460.

Methyl H₃CO CN CN S-amino-3a¹,7-dicyano-2-methyl-3a,3a¹,4,5,6,6a-hexah ydropyrano[4,3,2-*ij*]isoquinoline-3- carboxylate (4b)

Yellow solid, 0.219 g, yield 70%; mp 228–230 °C. IR (KBr): 3394, 2958, 2189, 1655, 1584, 1443, 1368, 1320, 1258, 1134, 1103, 885, 781 cm⁻¹; ¹H NMR (400 MHz, DMSO- d_6) $\delta = 6.96$ (s, 2H, NH₂), 3.76 (s, 3H, CH₃O), 3.24–3.20 (m, 1H, CH), 2.98–2.93 (m, 1H, CH), 2.38 (s, 3H, CH₃), 1.92–1.82 (m, 2H, 2 × CH), 1.48–1.45 (m, 1H, CH), 1.32–1.23 (m, 1H, CH), 1.07–0.95 (m, 2H, 2 × CH); ¹³C NMR (100 MHz, DMSO- d_6) $\delta = 165.5$, 160.4, 159.2, 156.4, 120.4, 117.7, 111.7, 60.0, 52.7, 39.3, 37.6, 35.6, 29.6, 28.6, 20.3, 18.8; HRMS (ESI): m/z calcd for C₁₆H₁₇N₄O₃ [(M+H)⁺], 313.1301; found, 313.1298.

3-Acetyl-8-amino-2-methyl-3a,3a¹,4,5,6,6a-hexahydropyra no[4,3,2-*ij*]isoquinoline-3a¹,7-dicarbonitrile (4c)

Yellow solid, 0.213 g, yield 72%; mp 258–260 °C. IR (KBr): 3356, 2964, 2177, 1642, 1669, 1559, 1551, 1332, 1326, 1238,

1115, 1004, 876, 740 cm⁻¹; ¹H NMR (400 MHz, DMSO- d_6) $\delta = 6.93$ (s, 2H, NH₂), 3.31–3.28 (m, 1H, CH), 2.90–2.87 (m, 1H, CH), 2.39 (s, 3H, CH₃), 2.34 (s, 3H, CH₃), 1.95–1.78 (m, 2H, 2 × CH), 1.49–1.46 (m, 1H, CH), 1.34–1.24 (m, 1H, CH), 1.05–0.96 (m, 2H, 2 × CH); ¹³C NMR (100 MHz, DMSO- d_6) $\delta = 165.1$, 160.2, 159.2, 156.4, 120.4, 117.8, 111.8, 61.52, 60.0, 39.3, 37.6, 35.7, 29.7, 28.7, 20.3, 18.9, 14.5; HRMS (ESI): m/z calcd for C₁₆H₁₇N₄O₂ [(M+H)⁺], 297.1352; found, 297.1327.

Ethyl 8-amino-3a¹,7-dicyano-2-phenyl-3a,3a¹,4,5,6,6a-hexahy dropyrano[4,3,2-*ij*]isoquinoline-3- carboxylate (4d)

uropyrano[4,5,2-ij]isoquinoinie-5- carboxyrate (4u)

Yellow solid, 0.311 g, yield 80%; mp 228–230 °C. IR (KBr): 3356, 2956, 2167, 1652, 1649, 1579, 1571, 1392, 1326, 1249, 1123, 1000, 879, 745 cm⁻¹; ¹H NMR (400 MHz, DMSO- d_6) δ = 7.53–7.34 (m, 5H, ArH), 7.01 (s, 2H, NH₂), 4.01 (q, J = 6.8 Hz, 2H, CH₂O), 3.34–3.23 (m, 1H, CH), 3.02 (d, J = 8.4 Hz, 1H, CH), 2.09 (d, J = 11.4 Hz, 1H, CH), 1.88 (d, J = 11.8 Hz, 1H, CH), 1.55–1.52 (m, 1H, CH), 1.36–1.19 (m, 2H, 2 × CH), 1.12–1.03 (m, 1H, CH), 0.91 (t, J = 6.8 Hz, 3H, CH₃); ¹³C NMR (100 MHz, DMSO- d_6) $\delta = 165.5$, 159.4 , 157.3, 156.36 , 132.3, 131.1, 129.0, 128.7, 120.4, 117.7, 113.4, 61.5, 60.1, 39.5, 37.6, 36.8, 29.6, 28.7, 20.3, 13.8; HRMS (ESI): m/z calcd for C₂₂H₂₁N₄O₃ [(M+H)⁺], 389.1614; found, 389.1609.

CN

EtO

CN

8-Amino-3-benzoyl-2-phenyl-2,3,3a,3a¹,4,5,6,6a-octahydr opyrano[4,3,2-*ij*]isoquinoline-3a¹,7-dicarbonitrile (4e)

Ph $^{\circ}$ N $^{\circ}$ NH₂ Yellow solid, 0.215 g, yield 51%; mp 238–240 °C. IR (KBr): 3359, 2952, 2166, 1663, 1638, 1587, 1564, 1383, 1333, 1247, 1124, 1004, 875, 741 cm⁻¹; ¹H NMR (400 MHz, DMSO-*d*₆) δ = 7.66–7.64 (m, 2H, ArH), 7.39–7.36 (m, 1H, ArH), 7.28–7.18 (m, 7H, ArH), 7.04 (s, 2H, NH₂), 3.32–3.29 (m, 1H, CH), 3.04–3.00 (m, 1H, CH), 2.25–2.23 (m, 1H, CH), 1.92–1.89 (m, 1H, CH), 1.57–1.55 (m, 1H, CH), 1.46–1.31 (m, 2H, 2 × CH), 1.16–1.07 (m, 1H, CH); ¹³C NMR (100 MHz, DMSO-*d*₆) δ = 195.5, 193.3, 165.0, 151.6, 136.9, 136.8, 129.8, 129.5, 129.4, 128.4, 120.1, 118.2, 58.3, 56.8, 39.9, 39.7, 39.5, 39.3, 39.1, 28.8, 25.10, 24.9; HRMS (ESI): *m/z* calcd for C₂₆H₂₃N₄O₂ [(M+H)⁺], 423.1821; found, 423.1834.

Ethyl

NH₂ NH₂ NH₂ opyrano[4,3,2-ij]isoquinoline-3-carboxylate (4f)

Yellow solid, 0.231 g, yield 68%; mp 148–150 °C. IR (KBr): 3344, 2967, 2168, 1666, 1649, 1569, 1541, 1392, 1346, 1258, 1135, 989, 877, 742 cm⁻¹; ¹H NMR (400 MHz, DMSO- d_6) δ = 6.96 (s, 2H, NH₂), 4.24–4.21 (m, 2H, CH₂O), 3.22–3.17 (m, 1H, CH), 2.98–2.93 (m, 1H, CH), 2.87–2.82 (m, 1H, CH), 2.69–2.64 (m, 1H, CH), 1.92–1.82 (m, 2H, CH₂), 1.49–1.45 (m, 1H, CH), 1.29–1.23 (m, 4H, CH₃ and CH), 1.11 (t, *J* = 7.4 Hz, 3H, CH₃), 1.05–0.96 (m, 2H, 2 × CH); ¹³C NMR (100 MHz, DMSO- d_6) δ = 164.9, 164.3, 159.6, 156.4, 120.4, 117.7, 111.4, 61.6, 60.0, 39.3, 37.5, 35.60, 29.7, 28.7, 25.2, 20.4, 14.4, 11.8; HRMS (ESI): *m*/*z* calcd for C₁₈H₂₁N₄O₃ [(M+H)⁺], 341.1614; found, 341.1592.

Ethyl

8-amino-3a¹,7-dicyano-2-propyl-3a,3a¹,4,5,6,6a-hexahyd ropyrano[4,3,2-ij]isoquinoline-3-carboxylate (4g)

Yellow solid, 0.234 g, yield 66%; mp 143–145 °C. IR (KBr): 3339, 2956, 2164, 1655, 1645, 1556, 1575, 1333, 1216, 1148, 1025, 1000, 876, 744 cm⁻¹; ¹H NMR (400 MHz, DMSO- d_6) $\delta = 6.94$ (s, 2H, NH₂), 4.25–4.19 (m, 2H, CH₂O), 3.24–3.18 (m, 1H, CH), 2.97–2.87 (m, 2H, CH₂), 2.67–2.60 (m, 1H, CH), 1.93–1.82 (m, 2H, CH₂), 1.62–1.46 (m, 3H, CH₃), 1.28–1.23 (m, 4H, 2 × CH₂), 1.10–0.95 (m, 2H, CH₂), 0.91 (t, J = 7.4 Hz, 3H, CH₃); ¹³C NMR (100 MHz, DMSO- d_6) $\delta = 165.0$, 163.0, 159.5, 156.4, 120.4, 117.8, 112.6, 61.6, 60.0, 39.3, 37.5, 35.8, 33.0, 29.7, 28.7, 20.4, 14.4, 13.4; HRMS (ESI): m/z calcd for C₁₉H₂₃N₄O₃ [(M+H)⁺], 355.1770; found, 355.1750.

(KBr): 3356, 2944, 2157, 1762, 1539, 1489, 1361, 1282, 1136, 1247, 1126, 1004, 889, 732 cm⁻¹; ¹H NMR (400 MHz, DMSO- d_6) δ = 7.00 (s, 2H, NH₂), 3.85–3.79 (m, 1H, CH), 3.77 (s, 3H, CH₃O), 3.21–3.18 (m, 1H, CH), 2.97–2.92(m, 1H, CH), 1.94–1.82 (m, 2H, 2 × CH), 1.49–1.45 (m, 1H, CH), 1.29–1.23 (m, 1H, CH), 1.12–1.08 (m, 6H, 2 × CH₃), 1.03–0.97 (m, 2H, 2 × CH); ¹³C NMR (100 MHz, DMSO- d_6) δ = 166.5, 165.6, 160.2, 156.5, 120.5, 117.7, 110.7, 60.1, 52.9, 39.3, 37.4, 35.6, 29.6, 29.3, 28.4, 20.3, 19.4, 19.1; HRMS (ESI): *m*/*z* calcd for C₁₈H₂₁N₄O₃ [(M+H)⁺], 341.1614; found, 341.1604.

Yellow solid, 0.237 g, yield 70%; mp 248–250 °C. IR (KBr): 3396, 2934, 2147, 1652, 1629, 1549, 1501, 1342, 1306, 1233, 1105, 1004, 875, 741 cm⁻¹; ¹H NMR (400 MHz, DMSO- d_6) $\delta = 6.94$ (s, 2H, NH₂), 6.02–5.91 (m, 1H, CH), 5.36–5.24 (m, 2H, 2 × CH),

4.71 (d, J = 5.2 Hz, 2H, CH₂O), 3.26–3.20 (m, 1H, CH), 2.99–2.93 (m, 1H, CH), 2.38 (s, 3H, CH₃), 1.92–1.81 (m, 2H, 2 × CH), 1.50–1.47 (m, 1H, CH), 1.33–1.22 (m, 1H, CH), 1.09–0.97 (m, 2H, 2 × CH); ¹³C NMR (100 MHz, DMSO- d_6) δ = 166.5, 165.5, 160.0, 156.5, 120.4, 117.7, 110.7, 60.0, 52.9, 37.4, 35.6, 29.6, 29.30, 28.5, 20.3, 19.5, 19.1; HRMS (ESI): m/z calcd for C₁₈H₁₉N₄O₃ [(M+H)⁺], 339.1457; found, 339.1485.

Yellow solid, 0.275 g, yield 65%; mp 120–122 °C. IR (KBr): 2925, 2851, 2764, 2380, 2174, 1690, 1656, 1491, 1383, 1270, 1192, 1093, 1016, 844, 782, 730 cm⁻¹; ¹H NMR (400 MHz, DMSO- d_6) δ = 7.56–7.54 (m, 2H, ArH), 7.49–7.47 (m, 2H, ArH), 7.02 (s, 2H, NH₂), 4.04 (q, *J* = 6.8 Hz, 2H, CH₂O), 3.02 (dd, *J*₁ = 4.4, *J*₂ = 4.4 Hz, 1H, CH), 2.07 (d, *J* = 12.4 Hz, 1H, CH), 1.87 (d, *J* = 11.2 Hz, 1H, CH), 1.53 (d, *J* = 12.8 Hz, 1H, CH), 1.363–1.05 (m, 4H, 4 × CH), 0.95 (t, *J* = 6.8 Hz, 3H, CH₃); ¹³C NMR (100 MHz, DMSO- d_6) δ = 165.1, 159.2, 156.3, 156.2, 135.8, 131.2, 131.1, 128.8, 120.3, 117.7, 113.8, 61.6, 60.0, 37.6, 36.7, 29.6, 28.6, 20.2, 13.9; HRMS (ESI): *m*/*z* calcd for C₂₂H₁₉ClNaN₄O₃ [(M+Na)⁺], 445.1043; found, 445.1049.

Yellow solid, 0.318 g, yield 68%; mp 216–218 °C. IR (KBr): 2988, 2941, 2860, 2358, 2173, 1687, 1656, 1575, 1440, 1371, 1410, 1368, 1329, 1210, 1086, 834, 786, 722 cm⁻¹; ¹H NMR (400 MHz, DMSO- d_6) δ = 7.71–7.67 (m, 2H, ArH), 7.42–7.39 (m, 2H, ArH), 7.02 (s, 2H, NH₂), 4.04 (q, J = 7.2 Hz, 2H, CH₂O), 3.02 (dd, J_1 = 4.8, J_2 = 4.8 Hz, 1H, CH), 2.07 (d, J = 11.2 Hz, 1H, CH), 1.87 (d, J = 11.2 Hz, 1H, CH), 1.53 (d, J = 13.2 Hz, 1H, CH), 1.39–0.94 (m, 4H, 4 × CH), 0.95 (t, J = 7.2 Hz, 3H, CH₃); ¹³C NMR (100 MHz, DMSO- d_6) δ = 165.0, 159.1, 156.3, 156.2, 131.7, 131.5, 131.2,

124.6, 120.3, 117.6, 113.8, 61.6, 60.0, 37.6, 36.7, 29.6, 28.6, 20.2, 13.8; HRMS (ESI): m/z calcd for C₂₂H₁₉BrNaN₄O₃ [(M+Na)⁺], 489.0538; found, 489.0520.

Ethyl 8-amino-3a¹,7-dicyano-2-(*p*-tolyl)-3a,3a¹,4,5,6,6a-hexa hydropyrano[4,3,2-*ij*]isoquinoline-3- carboxylate (4l)

Yellow solid, 0.306 g, yield 76%; mp 120–122 °C. IR (KBr): 3336, 2985, 2935, 2864, 2362, 2175, 1692, 1658, 1578, 1446, 1373, 1411, 1373, 1331, 1219, 1088, 1015, 837, 824, 781, 721 cm⁻¹; ¹H NMR (400 MHz, DMSO- d_6) δ = 7.33–7.27 (m, 4H, ArH), 7.00 (s, 2H, NH₂), 4.03 (q, J = 7.2 Hz, 2H, CH₂O), 3.01 (dd, J_1 = 4.0, J_2 = 4.4 Hz, 1H, CH), 2,37 (s, 3H, CH₃), 2.08 (d, J = 11.6 Hz, 1H, CH), 1.87 (d, J = 11.6 Hz, 1H, CH), 1.53 (d, J = 12.8 Hz, 1H, CH), 1.39–1.02 (m, 4H, 4 × CH), 0.95 (t, J = 7.2 Hz, 3H, CH₃); ¹³C NMR (100 MHz, DMSO- d_6): δ = 165.6, 159.5, 157.3, 156.4, 141.1, 129.4, 129.2, 129.0, 120.4, 117.8, 112.9, 61.4, 60.0, 37.6, 36.9, 29.6, 28.7, 21.5, 20.3, 13.9; HRMS (ESI): m/z calcd for C₂₃H₂₂NaN₄O₃ [(M+Na)⁺], 425.1590; found, 425.1599.

11-Amino-2,2-dimethyl-4,13-dioxo-1,2,3,4,5,6,7,8,9,10-decah ydro-5,9,10-(epiethane[1,1,2]triylazenometheno)benzo[8] annulene-10,14-dicarbonitrile (6a)

White solid, 0.235 g, yield 70%; mp > 300 °C. IR (KBr) 3416, 2174, 1675, 1642, 1536, 1448, 1382, 1290, 1129, 1051, 1038

cm⁻¹; ¹H NMR (400 MHz, DMSO-*d*₆) δ = 9.44 (s, 1H, NH), 8.90 (s, 1H, NH), 3.20 (s, 2H, 2 × CH), 2.77–2.73 (m, 1H, CH), 2.46 (s, 1H, CH), 2.23–2.19 (m, 2H, 2 × CH), 2.08–2.04 (m, 1H, CH), 1.90–1.86 (m, 2H, 2 × CH), 1.52–1.49 (m, 2H, 2 × CH), 1.33–1.29 (s, 1H, CH), 1.04 (s, 3H, CH₃), 0.75 (s, 3H, CH₃); ¹³C NMR (100 MHz, DMSO-*d*₆) δ = 196.0, 146.5, 133.0, 119.2, 115.2, 56.5, 50.3, 49.3, 46.6, 37.9, 34.6, 33.49, 29.2, 26.0, 25.5, 24.8, 19.0, 16.0; HRMS (ESI): *m*/*z* calcd for C₁₉H₂₀N₄O₂ [(M)⁺], 336.1586; found, 336.1581.

11-Amino-4,13-dioxo-1,2,3,4,5,6,7,8,9,10-decahydro-5,9,10-(ep iethane[1,1,2]triylazenometheno)benzo[8]annulene-10,14-dica rbonitrile (6b)

White solid, 0.185 g, yiled 60%; mp 238–240 °C. IR (KBr): 3410,

2175, 1670, 1630, 1538, 1420, 1380, 1280, 1123, 1042, 1036 cm⁻¹; ¹H NMR (400 MHz, DMSO-*d*₆) δ = 9.42 (s, 1H, NH), 8.94 (s, 1H, NH), 3.13–3.19 (m, 2H, 2 × CH), 2.74–2.79 (m, 1H, CH), 2.34–2.47 (m, 3H, 3 × CH), 2.03–2.06 (m, 2H, 2 × CH), 1.83–1.92 (m, 3H, 3 × CH), 1.51–1.54 (m, 2H, 2 × CH), 1.30–1.37 (m, 1H, CH); ¹³C NMR (100 MHz, DMSO-*d*₆) δ = 195.7, 148.9, 133.9, 119.2, 115.4, 56.5, 49.1, 46.7, 37.9, 37.2, 34.6, 26.9, 26.0, 24.8, 22.3, 19.0, 15.8; HRMS (ESI): *m/z* calcd for C₁₇H₁₆N₄O₂ [(M)⁺], 308.1273; found, 308.1272.

11-Amino-2-methyl-4,13-dioxo-1,2,3,4,5,6,7,8,9,10-decahydr o-5,9,10-(epiethane[1,1,2]triylazenometheno)benzo[8]annule ne-10,14-dicarbonitrile (6c)

White solid, 0.219 g, yield 68%; mp 170–172 °C. IR (KBr):

 $^{-1}$; ¹H NMR (400 MHz, DMSO- d_6) $\delta = 9.40$ (s, 1H, NH), 8.93 (s, 1H, NH), 3.19–3.16 (m, 2H, 2 × CH), 2.85–2.81 (m, 1H, CH), 2.54 (s, 1H, CH), 2.36–2.31 (m, 1H, CH), 2.22–2.03 (m, 2H, 2 × CH), 1.93–1.81 (m, 2H, 2 × CH), 1.52–1.50 (m, 2H, 2 × CH), 1.33–1.30 (m, 1H, CH), 1.03–1.01 (m, 1H, CH), 0.90 (d, J = 6.0 Hz, 3H, CH₃); ¹³C NMR (100 MHz, DMSO- d_6) $\delta = 195.8$, 147.3, 133.5, 119.2, 115.5, 46.7, 45.0, 44.6, 38.1, 34.5, 31.2, 30.1, 28.7, 26.0, 24.8, 21.1, 19.7, 15.8; HRMS (ESI): m/z calcd for C₁₈H₁₈N₄O₂ [(M)⁺], 322.1430; found, 322.1418.

11-Amino-4,13-dioxo-2-propyl-1,2,3,4,5,6,7,8,9,10-dec ahydro-5,9,10-(epiethane[1,1,2]triylazenometheno)ben zo[8]annulene-10,14-dicarbonitrile (6d)

White solid, 0.228 g, yield 65%; mp 162–164 °C. IR (KBr) 3413, 2172, 1675, 1542, 1444, 1297, 1290, 1134, 1002

cm⁻¹; ¹H NMR (400 MHz, DMSO- d_6) δ = 9.44 (s, 1H, NH), 8.94 (s, 1H, NH), 3.18–3.13 (m, 2H, 2 × CH), 2.87–2.84 (m, 1H, CH), 2.56–2.53 (m, 1H, CH),

2.42–2.13 (m, 3H, 3 × CH), 2.07–2.03 (m, 1H, CH), 1.89–1.79 (m, 2H, CH₂), 1.52–1.49 (m, 2H, CH₂), 1.31–1.19 (m, 5H, 5 × CH), 0.85 (t, J = 7.0 Hz, 3H, CH₃); ¹³C NMR (100 MHz, DMSO- d_6) $\delta = 195.7$, 147.3, 133.7, 119.2, 115.5, 46.6, 43.4, 43.2, 38.1, 37.3, 35.9, 34.5, 33.3, 32.5, 26.0, 24.8, 19.7, 19.4, 15.8, 14.3; HRMS (ESI): m/z calcd for C₂₀H₂₂N₄O₂ [(M)⁺], 350.1743; found, 350.1736.

11-Amino-2-isopropyl-4,13-dioxo-1,2,3,4,5,6,7,8,9,10-de cahydro-5,9,10-(epiethane[1,1,2]triylazenometheno)ben zo[8]annulene-10,14-dicarbonitrile (6e)

White solid, 0.245 g, yield 70%; mp 170–172 °C. IR (KBr): 3418, 2174, 1680, 1547, 1450, 1382, 1257, 1134, 1033

cm⁻¹; ¹H NMR (400 MHz, DMSO- d_6) $\delta = 9.39$ (s, 1H, NH), 8.96 (s, 1H, NH), 3.18–3.16 (m, 2H, 2 × CH), 2.84–2.80 (m, 1H, CH), 2.38–2.19 (m, 2H, 2 × CH), 2.07–2.04 (m, 1H, CH), 1.90–1.80 (m, 3H, 3 × CH), 1.58–1.45 (m, 3H, 3 × CH), 1.35–1.28 (m, 1H, CH), 0.91–0.84 (m, 7H, 3 × CH₃ and CH); ¹³C NMR (100 MHz, DMSO- d_6) $\delta = 196.0$, 147.8, 133.8, 119.3, 115.6, 46.6, 41.4, 41.1, 38.2, 34.5, 31.6, 30.8, 25.9, 24.8, 20.2, 19.9, 19.69, 19.6, 15.8; HRMS (ESI): m/z calcd for C₂₀H₂₂N₄O₂ [(M)⁺], 350.1743; found, 350.1742.

11-Amino-4,13-dioxo-2-phenyl-1,2,3,4,5,6,7,8,9,10-decah ydro-5,9,10-(epiethane[1,1,2]triylazenometheno)benzo[8]annulene-10,14-dicarbonitrile (6f)

White solid, 0.250 g, yield 65%; mp 278–280 °C. IR (KBr) 3404, 2173, 1678, 1538, 1448, 1378, 1294, 1145, 1027

cm⁻¹; ¹H NMR (400 MHz, DMSO- d_6) $\delta = 9.34$ (s, 1H, NH), 8.88 (s, 1H, NH), 7.35–7.27 (m, 5H, ArH), 3.55–3.49 (m, 1H, CH), 3.24–3.18 (m, 2H, 2 × CH), 2.96–2.84 (m, 2H, 2 × CH), 2.66–2.55 (m, 2H, 2 × CH), 2.11–1.83 (m, 3H, 3 × CH), 1.58–1.39 (m, 3H, 3 × CH); ¹³C NMR (100 MHz, DMSO- d_6) $\delta = 195.4$, 147.5, 143.2, 133.9, 129.1, 127.4, 119.3, 115.7, 115.1, 49.5, 46.7, 46.6, 43.8, 43.6, 39.2, 38.2, 34.8, 34.5, 26.0, 24.9, 15.8; HRMS (ESI): m/z calcd for C₂₃H₂₀N₄O₂ [(M)⁺], 384.1586; found, 384.1585.

11-Amino-2-(4-methoxyphenyl)-4,13-dioxo-1,2,3,4,5,6 ,7,8,9,10-decahydro-5,9,10-(epiethane[1,1,2]triylazeno metheno)benzo[8]annulene-10,14-dicarbonitrile (6g) White solid, 0.273 g, yield 66%; mp > 300 °C. IR (KBr): 3396, 2174, 1678, 1544, 1448, 1380, 1294, 1138, 1072,

1030 cm⁻¹; ¹H NMR (400 MHz, DMSO- d_6) δ = 9.31 (s, 1H, NH), 8.87 (s, 1H, NH), 7.26 (s, 2H, ArH), 6.89 (s, 2H, ArH), 3.72 (s, 3H, CH₃O), 3.45 (s, 1H, CH), 3.23–3.17 (m, 2H, 2 × CH), 2.89–2.80 (m, 2H, 2 × CH), 2.61–2.56 (m, 2H, 2 × CH), 2.10–1.86 (m, 3H, 3 × CH), 1.57–1.41 (m, 3H, 3 × CH); ¹³C NMR (100 MHz, DMSO- d_6): δ = 195.5, 158.6, 147.6, 135.2, 133.8, 128.4, 119.3, 115.7, 114.4, 55.5, 46.7, 44.2, 44.0, 38.5, 38.2, 35.1, 34.5, 34.3, 26.0, 24.9, 15.8, 15.5; HRMS (ESI): m/z calcd for C₂₄H₂₂N₄O₃ [(M)⁺], 414.1692; found, 414.1695.

11-Amino-2-(4-bromophenyl)-4,13-dioxo-1,2,3,4,5,6,7,8, 9,10-decahydro-5,9,10-(epiethane[1,1,2]triylazenometh eno)benzo[8]annulene-10,14-dicarbonitrile (6h)

White solid, 0.283 g, yield 61%; mp > 300 °C. IR (KBr): 3416, 2172, 1673, 1604, 1515, 1382, 1292, 1235, 1182, 1114, 1032 cm⁻¹; ¹H NMR (400 MHz, DMSO-*d*₆): $\delta = 9.31$ (s, 1H, NH), 8.86 (s, 1H, NH), 7.52 (s, 2H, ArH), 7.33(s, 2H, ArH), 3.54 (s, 1H, CH), 3.23–3.18 (m, 2H, 2 × CH), 2.91–2.87 (m, 2H, 2 × CH), 2.66–2.59 (m, 2H, 2 × CH), 2.10–1.86 (m, 3H, 3 × CH), 1.57–1.43 (m, 3H, 3 × CH); ¹³C NMR (100 MHz, DMSO-*d*₆): $\delta = 194.3$, 146.5, 141.7, 132.97, 131.0, 128.9, 119.5, 118.4, 114.7, 48.6, 45.8, 42.7, 42.4, 37.7, 37.3, 33.6, 33.5, 25.1, 24.0, 14.9, 14.6; HRMS (ESI): *m*/*z* calcd for C₂₃H₁₉BrN₄O₂ [(M)⁺], 462.0691; found, 462.0691.

4. NMR Spectra of Products

¹H NMR of compound (4a)

¹H NMR of compound (**4**c) -3.335 -3.311 -3.281 -3.287 -3.287 -3.287 -2.339 -2.339 -6.926 $\begin{array}{c} -1.857 \\ \swarrow 1.490 \\ \swarrow 1.461 \\ \swarrow 1.305 \\ \swarrow 1.020 \\ \frown 0.988 \\ 0.956 \end{array}$ CΝ <u>2.00</u> 1.00-£ 1.00⊥ 3.00 £ 3.00 £ 2.00-I 1.00 H 8.0 4.0 3.5 f1 (ppm) 2.5 -0.5 7.5 6.5 5.5 5.0 4.5 3.0 2.0 0.5 0.0 6.0 1.5 1.0 ¹³C NMR of compound (4c) 2165.07 2160.20 2159.18 2156.37~120.40 ~117.78 ~111.84 ~61.52 ~59.96 29.25 -37.63 -37.63 -37.63 -37.63 -35.66 -28.68 -28.68 -20.34 -14.48 CN CN 130 120 110 100 90 f1 (ppm) 200 180 60 40 30 10 -10 190 170 160 150 140 80 70 50 20 0

¹H NMR of compound (6a)

¹H NMR of compound (6e)

¹H NMR of compound (**6h**)

