Supporting Information

Copper(I) Iodide Catalyzed Synthesis of Primary Propargylic Alcohols from Terminal Alkyne

Shrishnu Kumar Kundu, *^a Kanchan Mitra[†] and Adinath Majee, *^b

^aDepartment of Chemistry, Jhargram Raj College, Jhargram, Midnapure(w)WB-721507,India .

^bDepartment of Chemistry, Visva-Bharati (A Central University), Santiniketan-731235, India

Table of Contents

Methods and materials	S2
General Experimental procedure	S2
Spectroscopic data of all products	S3 - S6
¹ H NMR Spectra of all products	S7 - S14
¹³ C NMR Spectra of all products	S14 - 20
GCMS Spectra of all products	S21 - 28
Reference	S28

Methods and Materials

General: All reactions carried out in a vial and heated in oil bath. Thin-layer chromatography (TLC) was performed on Merck 60 F254 silica gel plates and the purification of the crude product by column chromatography using 100-200 mesh silica gels (Merck). ¹H NMR and ¹³C NMR spectra were recorded on Bruker AV-400 Ultra Shield (400 MHz) NMR spectrometers using tetramethylsilane as an internal standard in CDCl₃ or *d*⁶ DMSO. Gas chromatographic (GC) analysis was performed on a Shimadzu GC-2010 system equipped with and FID detector and a capillary column, DB-5 (Agilent J&W, 0.25 mm i.d. x 30 m, 0.25 mm film thickness.

Materials. All materials were commercially available and purchased from Aldrich, Merck, and other commercial suppliers and were used without further purification.

General Experimental procedure: To a stirred solution of terminal alkyne (1eq), para formaldehyde (2 equiv), triethyl amine (1equiv) in DMSO, CuI (0.05 equiv) and KOH (1 equiv) was added. This reaction mixture was heated to 100^o C for 4-9 hours (monitored by TLC) in an open mouth vessel. After completion of reaction, it was cooled to room temperature and was diluted with ethyl acetate. Organic layer was washed with water, brine, dried over Na₂SO₄ and was concentrated under reduced pressure. The crude was purified by column chromatography on silica gel, 100-200 mesh (eluted with 5-30% ethyl acetate-hexane) to get respective analytically pure product.

¹H NMR, ¹³CNMR and GCMS spectral data of all products:

3-phenylprop-2-yn-1-ol (3a):²

¹H NMR (400MHz, CDCl₃): δ 7.46-7.41(m, 2H), 7.31-7.28(m, 3H), 4.49 (d, *J* = 5.4 Hz, 2H), 1.69-1.66 (m, 1H). ¹³C- NMR (100 MHz, CDCl₃): δ 131.61, 128.39, 122.51, 87.27, 85.50, 51.43. GCMS: m/z = 132 OH

¹ NMR (400MHz, CDCl₃): δ 7.36 (d, J = 8.5 Hz, 2H), 6.83 (d, , J = 8.6 Hz, 2H), 4.47-4.46 (d, J = 4.8 Hz, 2H), 3.80 (s, 3H), 1.62 (bs, 1H). ¹³C- NMR(100 MHz,CDCl₃): δ 159.82, 133.28, 114.73, 114.05, 86.01, 85.69, 55.38, 51.74. GCMS: m/z = 162.

3-(4-chlorophenyl)prop-2-yn-1ol (3c):

¹H NMR (400MHz,CDCl₃): δ 7.35 (d, *J* = 8.4, 2H), 7.27 (d, *J* = 8.4 Hz, 2H), 4.47 (s, 2H), 1.66 (bS, 1H). ¹³CNMR (100 MHz, CDCl₃): δ 134.69, 133.03, 128.80, 121.12, 88.27, 84.71, 51.67. Anal. Calcd. For (%) C₉H₇ClO C, 64.88; H, 4.23. Found C, 64.85; H, 4.30. GCMS: m/z = 166.

3-(4-aminophenyl)prop-2-yn-1ol (3e):

¹H NMR(400 MHz,CDCl₃): δ 7.23 (d, J = 8.4 Hz, 2H), 6.58 (d, J = 8.4 Hz, 2H), 4.45 (s, 2H), 3.79 (bS, 2H), 1.6 (bs, 1H). ¹³C-NMR (100MHz, DMSO- d_6): δ 149.52, 132.61, 114.02, 108.99, 86.97, 85.50, 50.01. Anal. Calcd. For (%) C₉H₉NO. C, 73.45; H, 6.16; N, 9.52. Found C, 73.54; H, 6.25; N, 9.55. GCMS: m/z = 147.

D₂O exchange of 3-(4-aminophenyl) prop-2-yn-1ol:

¹H NMR (400 MHz, CDCl₃): δ 7.23 (d, *J* = 8.4 Hz, 2H), 6.59-6.57(d, *J* = 8.4 Hz,2H), 4.44 (s, 2H).

3-(4-(trifluoromethyl) phenyl) prop-2-yn-1-ol (3f):³

¹H NMR (400MHz, DMSO- d_6): δ 7.54 (m, 4H), 4.51 (d, J = 6.2 Hz, 2H), 1.68 (t, J = 6.2 Hz, 1H). ¹³C NMR (100MHz, CDCl₃): δ 131.8, 130.2 (² $J_{C-F} = 33$ Hz), 126.3, 125.2 (³ $J_{C-F} = 4$ Hz), 123.8 (¹ $J_{C-F} = 271$ Hz), 89.6, 84.2, 51.3. GCMS: m/z = 200.

3-(6-methoxynaphthalen-2-yl)prop-2-yn-1-ol (3g):

¹H NMR (400MHz, DMSO-*d*₆): δ 7.95 (s, 1H), 7.76 (m, 2H), 7.42 (d, *J* = 9.2 Hz, 1H), 7.33 (s, 1H), 7.19 (dd, *J* = 6.4 Hz, 2.4 Hz, 1H), 5.32 (t, *J* = 6 Hz, 1H), 4.33 (d, *J* = 6 Hz, 2H), 3.90 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 158.35, 134.20, 131.48, 129.31, 128.93, 126.80, 119.42, 117.36, 105.74, 86.77, 86.20, 55.33, 51.75. Anal. Calcd. For (%)C₁₃H₁₀O₂: C, 78.77; H, 5.09. Found C, 78.84; H, 5.18. GCMS: m/z = 212.

Oct-2-yn-1-ol (3i):²

¹H NMR (400MHz, DMSO-*d*₆): δ 5.00 (t, *J* = 4.1 Hz, 1H), 4.02-4.00 (m, 2H), 2.19-2.14 (m, 2H), 1.44-1.39 (m, 2H), 1.34-1.23 (m,4H), 0.88-0.84 (m,J=8Hz,3H). ¹³C NMR (100 MHz, CDCl₃): δ 86.76, 78.40, 51.51, 31.15, 28.41, 22.32, 18.82, 14.07. GCMS: m/z = 126.

3-cyclopropylprop-2-yn-1-ol (3j):

¹H NMR (400MHz,DMSO-*d*₆): δ 4.99 (t, *J* = 3.9 Hz, 2H), 3.98 (dd, *J* = 4 Hz, 2 Hz, 2H), 1.32-1.25 (m, 1H), 0.78-0.70 (m, 2H), 0.57-0.53 (m, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 89.26, 73.71, 50.83, 8.03. Anal. Calcd. For (%) C₆H₈O: C, 74.97; H, 8.39 Found C, 75.18; H, 8.52. GCMS: m/z = 96.

4-methylpent-2-yne-1, 4-diol (3k):

¹H MNR (400MHz, DMSO- d_6): δ 5.23 (s, 1H), 5.09 (t, J = 5.9 Hz, 1H), 4.05 (d, J = 5.9 Hz,2H), 1.34 (s, 6H). ¹³C NMR (100 MHz, CDCl₃): δ 90.36, 80.40, 65.13, 50.55, 31.30. Anal. Calcd. For (%) C₆H₁₀O₂: C, 63.14; H, 8.83 Found C, 63.19; H, 8.91. GCMS: m/z =114.

Hex-2-yn-1-ol (3I):²

¹H NMR (400MHz, DMSO-*d*₆): δ 5.01 (t, *J* = 5.8 Hz, 1H), 4.03-4.01 (m, 2H), 2.17-2.11 (m, 2H), 1.49-1.40 (m, 2H), 0.92(t, J = 7.3 Hz, 3 H). ¹³C NMR (100 MHz, CDCl₃): δ 86.33, 78.39, 51.28, 23.96, 20.64, 13.40. GCMS: m/z = 98.

3-cyclohexylprop-2-yn-1-ol (3m):

¹H NMR (400MHz, DMSO- d_6): δ 5.01 (t, J = 5.8 Hz, 2H), 4.03-4.01(m, 2H), 2.38 (bs, 1H), 1.74-1.71 (m, 2H), 1.63-1.62 (m, 2H), 1.48 (bs, 1H), 1.34-1.24 (m, 5H). ¹³C NMR (100 MHz, CDCl₃): δ 90.72, 78.32, 51.47, 32.73, 29.20, 25.93, 25.02. Anal. Calcd. For (%) C₉H₁₄O: C, 78.21; H, 10.21. Found C, 78.35; H, 10.33. GCMS: m/z = 138.

4-phenylbut-2-yn-1-ol (3n):

¹H NMR (400MHz, DMSO- d_6): δ 7.41-7.28 (m, 5H), 4.97-4.92 (m, 1H), 4.88-4.85 (m, 1H), 3.46 (t, J = 5.2 Hz, 2H). Anal. Calcd. For (%) C₉H₈O: C, 81.79; H, 6.10. Found C, 81.87; H, 6.30. GCMS: m/z = 146.

3-p-tolylprop-2-yn-1-ol (3o)

¹H NMR (400 MHz, DMSO- d_6): δ 7.30 (d, J = 8 Hz, 2H), 7.18 (d, J = 8 Hz, 2H), 5.29 (t, J = 6 Hz, 1H), 4.27 (d, J = 6 Hz, 2H), 2.30 (s, 3H). Anal. Calcd. For (%) C₁₀H₁₀O: C, 82.16; H, 6.89; Found C, 82.36; H, 6.95;. GCMS: m/z = 146.

3-(6-aminopyridin-3-yl)prop-2-yn-1-ol(3p)

¹H NMR (400 MHz, DMSO-*d₆*): δ 8.10 (s, 1H), 7.41 (d, *J* = 8 Hz, 2H), 6.54 (d, *J* = 8 Hz, 2H), 5.24 (t, *J* = 6 Hz, 1H), 4.86 (s, 1H), 4.25(d, *J* = 6 Hz, 2H),. Anal. Calcd. For (%) C₈H₈N₂O: C, 64.85; H, 5.44; N, 18.91; Found C, 64.55; H, 5.21; N, 18.65. LCMS: m/z = 149.2

¹H NMR, ¹³CNMR spectra and GCMS spectra of all products: ¹H NMR spectra were recorded in CDCl₃ or DMSO- d_6 , in these spectra there is some unwanted peak of solvent impurity¹.

S7

1H NMR of 3-(4-chlorophenyl)prop-2-yn-1-ol in CDC13, 400 MHz(3c)

S9

¹H NMR of 4-methylpent-2-yne-1,4-diol in DMSO- d_6 , 400 MHz (3k)

 $^{13}\mathrm{C}$ of 3-(6-methoxynaphthalen-2-yl)prop-2-yn-1-ol in $\mathrm{CDCl}_3(3g)$

 $^{13}\mbox{C}$ NMR of $hex\mbox{-}2\mbox{-}yn\mbox{-}1\mbox{-}ol$ in $\mbox{CDCI}_3,$ 100 MHz (31)

GCMS of 3-(4-methoxyphenyl)prop-2-yn-1-ol (3b)

GCMS of 3-(4-aminophenyl)prop-2-yn-1-ol (3e)

GCMS of 3-(4-(trifluoromethyl)phenyl)prop-2-yn-1-ol(3f)

GCMS of 3-(6-methoxynaphthalen-2-yl)prop-2-yn-1-ol (3g)

GCMS of 3-Cyclopropylprop-2-yn-1-ol (3j)

GCMS of 4-methylpent-2-yne-1,4-diol (3k)

GCMS of Hex-2-yn-1-ol(31)

GCMS of 4-phenylbut-2-yn-1-ol (3n)

GCMS of 3-*p*-tolylprop-2-yn-1-ol (30)

References

- 1. Gottlieb, H. E.; Kotlyar, V.; Nudelman, A. J. Org. Chem. 1997, 62, 7512.
- 2. (a) Zwierzak A.; Tomassy, B. Synth. Commun. 1996, 26, 3593. (b) Poleschner, H.;

Heydenreich, M. Magn. Reson. Chem. 1995, 33, 917.

3. Franks, M. A.; Schrader, E. A.; Pietsch, E. C.; Pennella, D. R.; Tortib, S. V.; Welker, M. E. Bioorg. Med. Chem. **2005**, *13*, 2221.