Supporting Information:-

Curcumin Associated Poly (Allylamine Hydrochloride)-Phosphate Self-Assembled Hierarchically Ordered Nanocapsules: Size Dependent Investigation on Release and DPPH Scavenging Activity of Curcumin

Mai Mouslmani¹, Jessica M. Rosenholm², Neeraj Prabhakar², Markus Peurla³, Elias Baydoun⁴ Digambara Patra¹*

¹Department of Chemistry, American University of Beirut, Beirut, Lebanon, Email: <u>dp03@aub.edu.lb</u> ²Laboratory for Physical Chemistry, Åbo Akademi University, Turku, Finland; ³Laboratory of Electron Microscopy, University of Turku, Turku, Finland; ⁴Department of Biology, American University of Beirut, Beirut, Lebanon;

Figure S1: (a) Absorption¹ and **(b)** RRS spectra of curcumin (CU) and nanocapsules (NCs). NC1, NC2, NC3 and NC4 represent nanocapsules of various sizes as given in Figure 5.

Figure S2: Raman spectra of curcumin, PAH and nanocapsules. NC1, NC2, NC3 and NC4 represent nanocapsules of various sizes as given in Figure 5.

Reference:

 M. Mauslmani, D. Patra, Revoking excited state intra-molecular hydrogen transfer by size dependent tailored made hierarchically ordered nanocapsules, RSC Advances, 4 (2014) 8316-8320.