Supporting Information

Colorimetric and Ratiometric Fluorescent Chemodosimeter for Selective Sensing of Fluoride and Cyanide Ion: Tuning Selectivity in Proton Transfer and C-Si Bond Cleavage

Ajit Kumar Mahapatra^{*},^a Saikat Kumar Manna,^a Bhaskar Pramanik,^b Kalipada Maiti,^a Sanchita

Mondal,^a Syed Samim Ali ^a and Debasish Mandal^c

^a Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah-711103, West Bengal, India,

Email: akmahapatra@rediffmail.com, Fax: +913326684564

^b Indian Institute of Science Education and Research, Kolkata, India.

^c Institute of Chemistry, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel.

1. ¹H NMR spectrum of LHSi (400 MHz, CDCl₃):

Figure S1: ¹H NMR spectrum of LHSi in CDCl₃ solution.

2. ¹³C NMR spectrum of LHSi (400 MHz, CDCl₃):

Figure S2: ¹³C NMR spectrum of LHSi in CDCl₃ solution.

3. Mass spectrum of LHSi:

Figure S3: ESI-MS of LHSi.

4. UV-Vis and fluorescence spectra of LHSi in presence of TBAOH:

Figure S4: (A) Absorption and (B) fluorescence spectral changes of LHSi ($c = 4 \times 10^{-5}$ M) upon addition of TBAOH in THF solution.

5. ¹H NMR titration of LHSi in presence of TBAF:

Figure S5: Partial ¹H NMR (400 MHz) spectra of LHSi in $CDCl_3$ in (a) the absence and the presence of (a') 0.5 (inset), (b) 1.0, (c) 1.5, (d) 2.0, (e) 2.5, (f) 3.0, (g) 4.0, (h) 5.0, (i) 10.0 equiv of TBAF.

Figure S6: Partial expanded ¹H NMR (400 MHz) spectra of aromatic region of **LHSi** in CDCl₃ in (a) the absence and the presence of (b) 1.0, (c) 1.5, (d) 2.0, (e) 2.5, (f) 3.0, (g) 4.0, (h) 5.0, (i) 10.0 equiv of TBAF.

6. ¹H NMR titration of LHSi in presence of TBACN:

Figure S7: Partial ¹H NMR (400 MHz) spectra of LHSi in CDCl₃ in (a) the absence and the presence of (a') 0.5 (inset), (b) 1.0, (c) 1.5, (d) 2.0, (e) 4.0, (f) 10.0 equiv of TBACN.

7. Mass spectrum of LHSi + TBAF:

Figure S8: ESI-MS spectral evidence for desilylation of LHSi on treatment with TBAF.

8. Mass spectrum of LHSi + TBACN:

Figure S9: ESI-MS spectral evidence for desilylation of LHSi on treatment with TBACN.

9. Mass spectrum of LHSi on treatment with Hg²⁺ as a countercation with fluoride:

Figure S10: ESI-MS of LHSi on treatment with Hg²⁺ as a countercation with fluoride.

10. Computational Study:

Figure S11. Molecular orbitals and electronic contribution of the relevant excitations of LHSi and L^{-} .

Table S1. Selected electronic excitation energies (eV), oscillator strengths (f), main configurations, and CI Coefficients of the low-lying excited states of LHSi and L^- . The data were calculated by TDDFT//B3LYP/6-31+G(*d*) based on the optimized ground state geometries.

Molecules	Electronic	Excitation	fb	Composition ^c	(composition)
	Transition	Energy ^a			%
	$S_0 \rightarrow S_1$	2.6362 eV 470 nm	0.3664	$H \rightarrow L$	97.3
	$S_0 \rightarrow S_3$	3.1090 eV 398.79 nm	0.9420	$H-1 \rightarrow L$	98.0
LHSi					
	$S_0 \rightarrow S_8$	3.8881 eV 318.88 nm	1.0016	$H \rightarrow L + 1$	90.2
				$H \rightarrow L + 2$	
	$S_0 \rightarrow S_{16}$	4.6356 eV 267.46 nm	0.2809	$H-1 \rightarrow L+2$	85.1
				$H \rightarrow L + 3$	
L-	$S_0 \rightarrow S_2$	2.3657 eV 524.09 nm	0.3417	$H-1 \rightarrow L$	13.8
				$H \rightarrow L$	83.5
	$S_0 \rightarrow S_6$	3.4742 eV 356.87 nm	0.5410	$H \rightarrow L+1$	93.5
				$H \rightarrow L+2$	
	$S_0 \rightarrow S_8$	3.6764 eV 337.24 nm	0.2539	$H-1 \rightarrow L+3$	87.3

[a] Only selected excited states were considered. The numbers in parentheses are the excitation energy in wavelength. [b] Oscillator strength. [c] H stands for HOMO and L stands for LUMO.