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Fig. S1. IR spectrum of H2L in KBr disk

Fig. S2. IR spectrum of H2L-Zn2+ in KBr disk



Fig. S3. IR spectrum of H2L-Cu2+ in KBr disk



Fig. S4. 1H-NMR spectra of H2L in CDCl3

Fig. S5. 1H-NMR spectra of H2L-Zn2+ in CDCl3



Fig. S6. HRMS spectra of the receptor H2L



Fig. S7. HRMS spectra of the receptor H2L-Zn2+ complex 



Fig. S8. HRMS spectra of the receptor H2L-Cu2+ complex



Fig. S9. UV-Vis spectra of chemosensor (H2L) (20 μM) upon addition of 2 equivalent of various 

metal ions i,e,  Na+, K+, Ca2+, Mg2+, Mn2+, Fe3+, Cr3+, Co2+, Ni2+, Cu2+, Zn2+, Cd2+ and Hg2 (40 

μM)



Fig. S10. Change in emission spectrum of H2L-Zn2+ upon gradual addition of EDTA (40 μM) in 

1:1, v/v CH3CN:H2O.

Fig. S11. Change in emission spectrum of H2L-Cu2+ upon gradual addition of EDTA (40 μM) in 

1:1, v/v CH3CN:H2O.



Fig. S12. Mole ratio plot of Zn2+ to the receptor H2L

Fig. S13. Mole ratio plot of Cu2+ to the receptor H2L
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Fig. S14. Job’s plot diagram of the receptor (H2L) for Zn2+ (where ΔF indicates the change of emission 

intensity at 466 nm)

Fig. S15. Job’s plot diagram of the receptor (H2L) for Cu2+
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Determination of detection limit:

The detection limit was calculated based on the fluorescence titration. To determine the S/N 

ratio, the emission intensity of H2L without any analyte was measured by 10 times and the 

standard deviation of blank measurements was found to be 2.6756×10-3.

The limit of detection (LOD) of H2L for Zn2+ and Cu2+ was determined from the following 

equation: LOD = K ×  Where K = 3 in this case and  = (Sb1)/(S); Sb1 is the standard deviation 

of the blank solution; S is the slope of the calibration curve. 

From the linear response curve of H2L for Zn2+ graph we get slope = 4.11821×107, Thus using 

the formula we get the LOD = 1.94×10-8 M.

Fig. S16. Linear response curve of H2L at 465 nm depending on the Zn2+concentration.

From the linear response curve of H2L for Zn2+ graph we get slope = -9.5×106, Thus using the 

formula we get the LOD = 1.87×10-9 M.
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Fig. S17. Linear response curve of H2L at 485 nm depending on the Cu2+concentration.

Determination of binding constant from Fluorescence titration data:

Binding constant was calculated according to the Benesi-Hildebrand equation. Ka was calculated 

following the equation stated below.

   1/(F-Fo) = 1/{Ka(Fmax–Fo) [Mn+]x} + 1/[Fmax-Fo]

 Here F0, F and Fmax indicate the emission in absence of, at intermediate and at infinite 

concentration of metal ion respectively. The binding constant Ka is determined from the ratio of 

intercept and slope of Benesi-Hildebrand plot. Plot of 1/[F-F0] vs 1/[Zn2+]2 gives a straight line 

indicating 1:2 complexation between H2L and Zn2+. 

For the determination of binding constant of Cu2+ the equation modifies to 

1/(F-Fo) = 1/{Ka(Fmin–Fo) [Mn+]x} + 1/[Fmin-Fo]

Here F0, F and Fmin indicate the emission in absence of, at intermediate and at infinite 

concentration of metal ion respectively. The binding constant Ka is determined from the ratio of 

intercept and slope of Benesi-Hildebrand plot. Plot of 1/[F-F0] vs 1/[Cu2+]2 gives a straight line 

indicating 1:2 complexation between H2L and Cu2+.
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Fig. S18. Determination of association constant of H2L for Zn2+ from fluorescent titration data

Fig. S19. Determination of association constant of H2L for Cu2+ from fluorescent titration data
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Fig. S20. Change in emission spectrum of H2L (20 μM) upon addition of Na+, K+, Ca2+, Mg2+, 

Mn2+, Fe3+, Cr3+, Al3+, Co2+, Ni2+, Cu2+, Zn2+, Cd2+ and Hg2+ (40 µM) in CH3CN:H2O (1:1, v/v, 

pH=7.2).



Fig. S21. Optimized structure of H2L-Zn2+ complex by DFT/B3LYP/6-31G(d,p)/LANL2DZ 

method

Fig. S22. Optimized structure of H2L-Cu2+ complex by DFT/UB3LYP/6-31G(d,p)/LANL2DZ 

method
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Fig. S23. Contour plots of some selected molecular orbitals of H2L
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Fig. S24. Contour plots of some selected molecular orbitals of H2L-Zn2+ complex
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Fig. S25. Contour plots of some selected molecular orbitals of H2L-Cu2+ complex
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Fig. S26. Spin density plot of H2L-Cu2+ complex

Table S1. Vertical electronic transitions calculated by TDDFT/B3LYP/CPCM method for 

chemosensor H2L, H2L-Zn2+ and H2L-Cu2+ complexes

Compds. excitation (nm) Osc. Strength (f) Key transition Character

H2L 338.4 0.7214 HOMO  LUMO ILCT

H2L-Zn2+ 340.2 0.6960 HOMO  LUMO ILCT

482.0 0.0175 HOMO(β)  LUMO+1(β)

HOMO(β)  LUMO(β)

LMCTH2L-Cu2+

358.9 0.2016 HOMO-1(β)  LUMO+2(β) ILCT


