Supporting Information

A novel coumarin based molecular switch for dual sensing of Zn(II) and Cu(II)

Deblina Sarkar,^a Ajoy Kumar Pramanik,^a and Tapan Kumar Mondal^{a*}

^a Department of Chemistry, Jadavpur University, Kolkata-700032, India E-mail: <u>tkmondal@chemistry.jdvu.ac.in</u>

Contents

- Fig. S1. IR spectrum of H₂L in KBr disk
- **Fig. S2.** IR spectrum of H_2L - Zn^{2+} in KBr disk
- **Fig. S3.** IR spectrum of H_2L - Cu^{2+} in KBr disk
- Fig. S4. ¹H-NMR spectra of H₂L in CDCl₃
- Fig. S5. ¹H-NMR spectra of H₂L-Zn²⁺ complex in CDCl₃
- Fig. S6. HRMS spectra of the receptor H_2L
- **Fig. S7.** HRMS spectra of the receptor H_2L - Zn^{2+} complex
- Fig. S8. HRMS spectra of the receptor H_2L - Cu^{2+} complex
- Fig. S9. UV-Vis spectra of chemosensor (H₂L) (20 μ M) upon addition of 2 equivalent of various metal ions (40 μ M)
- Fig. S10. Change in emission spectrum of $\rm H_2L\text{-}Zn^{2+}$ upon gradual addition of EDTA (40 μM) in 1:1, v/v CH_3CN:H_2O
- Fig. S11. Change in emission spectrum of H_2L - Cu^{2+} upon gradual addition of EDTA (40 μ M) in 1:1, v/v CH₃CN:H₂O
- Fig. S12. Mole ratio plot of Zn^{2+} to the receptor H_2L
- Fig. S13. Mole ratio plot of Cu^{2+} to the receptor H_2L
- Fig. S14. Job's plot diagram of the receptor (H_2L) for Zn^{2+}
- Fig. S15. Job's plot diagram of the receptor (H_2L) for Cu^{2+}
- Fig. S16. Linear response curve of H_2L at 465 nm depending on the Zn^{2+} concentration
- Fig. S17. Linear response curve of H_2L at 485 nm depending on the Cu²⁺concentration
- Fig. S18. Determination of binding constant of H_2L for Zn^{2+} from fluorescent titration data
- Fig. S19. Determination of binding constant of H₂L for Cu²⁺ from fluorescent titration data

Fig. S20. Change in emission spectrum of H_2L (20 $\mu M)$ upon addition 40 μM of various metal ions.

Fig. S21. DFT optimized structure of H_2L -Zn²⁺ complex

- Fig. S22. DFT optimized structure of H_2L -Cu²⁺ complex
- Fig. S23. Contour plots of some selected molecular orbitals of H_2L
- Fig. S24. Contour plots of some selected molecular orbitals of H₂L-Zn²⁺ complex
- Fig. S25. Contour plots of some selected molecular orbitals of H_2L -Cu²⁺ complex

Fig. S26. Spin density plot of H_2L -Cu²⁺ complex

- **Table S1.** Vertical electronic transitions calculated by TDDFT/B3LYP/CPCM method for H_2L ,
- H_2L - Zn^{2+} and H_2L - Cu^{2+} complexes

Fig. S1. IR spectrum of H₂L in KBr disk

Fig. S2. IR spectrum of H_2L - Zn^{2+} in KBr disk

Fig. S3. IR spectrum of H₂L-Cu²⁺ in KBr disk

Fig. S4. ¹H-NMR spectra of H₂L in CDCl₃

Fig. S5. ¹H-NMR spectra of H_2L -Zn²⁺ in CDCl₃

Fig. S6. HRMS spectra of the receptor H_2L

Fig. S7. HRMS spectra of the receptor H_2L - Zn^{2+} complex

Fig. S8. HRMS spectra of the receptor H_2L -Cu²⁺ complex

Fig. S9. UV-Vis spectra of chemosensor (H₂L) (20 μ M) upon addition of 2 equivalent of various metal ions i,e, Na⁺, K⁺, Ca²⁺, Mg²⁺, Mn²⁺, Fe³⁺, Cr³⁺, Co²⁺, Ni²⁺, Cu²⁺, Zn²⁺, Cd²⁺ and Hg² (40 μ M)

Fig. S10. Change in emission spectrum of H_2L - Zn^{2+} upon gradual addition of EDTA (40 μ M) in 1:1, v/v CH₃CN:H₂O.

Fig. S11. Change in emission spectrum of H_2L -Cu²⁺ upon gradual addition of EDTA (40 μ M) in 1:1, v/v CH₃CN:H₂O.

Fig. S12. Mole ratio plot of Zn^{2+} to the receptor H_2L

Fig. S13. Mole ratio plot of Cu^{2+} to the receptor H_2L

Fig. S14. Job's plot diagram of the receptor (H₂L) for Zn^{2+} (where ΔF indicates the change of emission intensity at 466 nm)

Fig. S15. Job's plot diagram of the receptor (H₂L) for Cu²⁺

Determination of detection limit:

The detection limit was calculated based on the fluorescence titration. To determine the S/N ratio, the emission intensity of H₂L without any analyte was measured by 10 times and the standard deviation of blank measurements was found to be 2.6756×10^{-3} .

The limit of detection (LOD) of H₂L for Zn²⁺ and Cu²⁺ was determined from the following equation: LOD = K × σ Where K = 3 in this case and σ = (Sb₁)/(S); Sb₁ is the standard deviation of the blank solution; S is the slope of the calibration curve.

From the linear response curve of H₂L for Zn²⁺ graph we get slope = 4.11821×10^7 , Thus using the formula we get the LOD = 1.94×10^{-8} M.

Fig. S16. Linear response curve of H_2L at 465 nm depending on the Zn^{2+} concentration.

From the linear response curve of H₂L for Zn²⁺ graph we get slope = -9.5×10^6 , Thus using the formula we get the LOD = 1.87×10^{-9} M.

Fig. S17. Linear response curve of H₂L at 485 nm depending on the Cu²⁺concentration.

Determination of binding constant from Fluorescence titration data:

Binding constant was calculated according to the Benesi-Hildebrand equation. K_a was calculated following the equation stated below.

 $1/(F-F_o) = 1/\{K_a(F_{max}-F_o) [M^{n+}]^x\} + 1/[F_{max}-F_o]$

Here F_0 , F and F_{max} indicate the emission in absence of, at intermediate and at infinite concentration of metal ion respectively. The binding constant K_a is determined from the ratio of intercept and slope of Benesi-Hildebrand plot. Plot of $1/[F-F_0]$ vs $1/[Zn^{2+}]^2$ gives a straight line indicating 1:2 complexation between H_2L and Zn^{2+} .

For the determination of binding constant of Cu²⁺ the equation modifies to

 $1/(F-F_o) = 1/\{K_a(F_{min}-F_o) [M^{n+}]^x\} + 1/[F_{min}-F_o]$

Here F_0 , F and F_{min} indicate the emission in absence of, at intermediate and at infinite concentration of metal ion respectively. The binding constant K_a is determined from the ratio of intercept and slope of Benesi-Hildebrand plot. Plot of $1/[F-F_0]$ vs $1/[Cu^{2+}]^2$ gives a straight line indicating 1:2 complexation between H_2L and Cu^{2+} .

Fig. S18. Determination of association constant of H_2L for Zn^{2+} from fluorescent titration data

Fig. S19. Determination of association constant of H₂L for Cu²⁺ from fluorescent titration data

Fig. S20. Change in emission spectrum of H₂L (20 μ M) upon addition of Na⁺, K⁺, Ca²⁺, Mg²⁺, Mn²⁺, Fe³⁺, Cr³⁺, Al³⁺, Co²⁺, Ni²⁺, Cu²⁺, Zn²⁺, Cd²⁺ and Hg²⁺ (40 μ M) in CH₃CN:H₂O (1:1, v/v, pH=7.2).

Fig. S21. Optimized structure of H_2L - Zn^{2+} complex by DFT/B3LYP/6-31G(d,p)/LANL2DZ method

Fig. S22. Optimized structure of H_2L - Cu^{2+} complex by DFT/UB3LYP/6-31G(d,p)/LANL2DZ method

Fig. S23. Contour plots of some selected molecular orbitals of H_2L

Fig. S24. Contour plots of some selected molecular orbitals of H_2L -Zn²⁺ complex

Fig. S25. Contour plots of some selected molecular orbitals of H_2L -Cu²⁺ complex

Table S1. Vertical electronic transitions calculated by TDDFT/B3LYP/CPCM method for chemosensor H_2L , H_2L - Zn^{2+} and H_2L - Cu^{2+} complexes

Compds.	$\lambda_{\text{excitation}} (\text{nm})$	Osc. Strength (f)	Key transition	Character
H ₂ L	338.4	0.7214	HOMO → LUMO	ILCT
H_2L - Zn^{2+}	340.2	0.6960	$HOMO \rightarrow LUMO$	ILCT
H_2L - Cu^{2+}	482.0	0.0175	$HOMO(\beta) \rightarrow LUMO+1(\beta)$ $HOMO(\beta) \rightarrow LUMO(\beta)$	LMCT
	358.9	0.2016	$\text{HOMO-1}(\beta) \rightarrow \text{LUMO+2}(\beta)$	ILCT