Mild and Highly Efficient Metal-Free Oxidative α-Cyanation of *N*-Acyl/Sulfonyl Tetrahydroisoquinolines Changcun Yan, Yuxiu Liu, and Qingmin Wang*

Supporting Information

State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, People's Republic of China

Table of Contents	S1
General Information	S2
Characterization of starting materials	
General procedure to synthesize 2a-t and 4	S3
Characterization of products	
References	S9
Copies of ¹ H NMR and ¹³ C NMR spectra for new compounds	

General Information: All reagents were used as received. Acetonitrile was distilled on phosphorus pentoxide. ¹H and ¹³C Nuclear Magnetic Resonance (NMR) spectra were recorded on Bruker Avance 400 Ultrashield NMR spectrometers. Chemical shifts (δ) were given in parts per million (ppm) and were measured downfield from internal tetramethylsilane. High-resolution mass spectrometry (HRMS) data were obtained on an FTICR-MS instrument (Ionspec 7.0 T). The melting points were determined on an X-4 microscope melting point apparatus and are uncorrected. Conversion was monitored by thin layer chromatography (TLC). Flash column chromatography was performed over silica gel (100-200 mesh). 2,2,6,6-tetramethylpiperidine *N*-oxide fluoroborate salt (T⁺BF₄⁻) was synthesized with a described procedure previously.^{S1}

Characterization of starting materials

To a solution of tetrahydroisoquinoline (THIQ, 1mmol, 1 equiv.) in CH_2Cl_2 (20 mL) was added triethylamine (0.17 mL, 1.2 equiv.). The mixture was cooled to 0 °C, and acyl chloride or anhydride (1.2 equiv.) was added slowly. The mixture was stirred 10 min at 0 °C and then 1 h at rt. The solution was washed with water and brine, then dried over MgSO₄ and concentrated. The crude product was purified by flash column chromatography (elution: PE:EA = 5:1), and **1** was obtained in the yield of 75-99%. Characterization of non-previously reported compounds is given.

phenyl 3,4-dihydroisoquinoline-2(1H)-carboxylate (1d)

White solid, Mp: 90-91 °C. ¹H NMR (400 MHz, CDCl₃, rotomers seen) δ 7.35 (t, J = 6.8 Hz, 2H), 7.29 – 7.05 (m, 7H), 4.82 and 4.69 (s, 2H), 3.93 – 3.71 (m, 2H), 3.02 – 2.83 (m, 2H). ¹³C NMR (100 MHz, CDCl₃, rotomers seen) δ 154.0, 151.5, 134.6, 134.4, 133.3, 132.9, 129.4, 129.0, 128.7, 126.8, 126.6, 126.5, 126.3, 125.4, 121.9, 46.3, 46.0, 42.4, 41.7, 29.2, 28.8. HRMS (ESI) calcd for C₁₄H₁₈NO₂ [M+H]⁺ 234.1489, found 234.1489.

N,N-dimethyl-3,4-dihydroisoquinoline-2(1H)-carboxamide (1f)

Yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.18 – 7.05 (m, 4H), 4.40 (s, 2H), 3.47 (t, J = 6.0 Hz, 2H), 2.90 (t, J = 6.0 Hz, 2H), 2.86 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 164.9, 134.6, 134.0, 128.9, 126.4, 126.3, 126.1, 48.8, 44.8, 38.5, 28.7. HRMS (ESI) calcd for C₁₂H₁₇N₂O [M+H]⁺ 205.1335, found 205.1340.

1-(3,4-dihydroisoquinolin-2(1*H*)-yl)hexan-1-one (1h)

Pale yellow oil. ¹H NMR (400 MHz, CDCl₃, rotomers seen) δ 7.25 – 7.02 (m, 4H), 4.72 and 4.60 (s, 2H), 3.81 and 3.66 (t, *J* = 6.0 Hz, 2H), 2.88 and 2.82 (t, *J* = 6.0, 2H), 2.45 – 2.34 (m, 2H), 1.75

- 1.58 (m, 2H), 1.43 - 1.27 (m, 4H), 0.98 - 0.82 (m, 3H). ¹³C NMR (100 MHz, CDCl₃, rotomers seen) δ 172.2, 172.1, 135.1, 134.1, 133.6, 132.7, 128.9, 128.3, 126.8, 126.6, 126.5, 126.4, 126.3, 126.0, 47.4, 44.2, 43.2, 39.6, 33.8, 33.6, 31.7, 31.6, 29.6, 28.5, 25.0, 24.9, 22.5, 14.0. HRMS (ESI) calcd for C₁₅H₂₂NO [M+H]⁺ 232.1696, found 232.1698.

cyclopropyl(3,4-dihydroisoquinolin-2(1H)-yl)methanone (1m)

Colorless oil. ¹H NMR (400 MHz, CDCl₃, rotomers seen) δ 7.35 – 7.14 (m, 4H), 4.95 and 4.82 (s, 2H), 4.05 – 3.85 (m, 2H), 3.11 – 2.85 (m, 2H), 2.02 – 1.85 (m, 2H), 1.16 – 1.05 (m, 2H), 0.98 – 0.85 (m, 2H). ¹³C NMR (100 MHz, CDCl₃, rotomers seen) δ 172.4, 135.3, 134.5, 133.9, 132.9, 128.9, 128.2, 126.7, 126.6, 126.4, 126.2, 47.2, 44.7, 43.3, 40.1, 29.6, 28.7, 12.6, 11.6, 11.4, 8.4, 7.6, 7.4. HRMS (ESI) calcd for C₁₃H₁₆NO [M+H]⁺ 202.1226, found 202.1230.

benzyl 6-methoxy-3,4-dihydroisoquinoline-2(1H)-carboxylate (1p)

Colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.45 – 7.27 (m, 5H), 7.00 (d, J = 12.8 Hz, 1H), 6.74 (d, J = 8.4 Hz, 1H), 6.70 – 6.63 (m, 1H), 5.17 (s, 2H), 4.58 (s, 2H), 3.77 (s, 3H), 3.74 – 3.64 (m, 2H), 2.88 – 2.75 (m, 2H). ¹³C NMR (100 MHz, CDCl₃, rotomers seen) δ 158.2, 155.6, 136.8, 135.9, 128.5, 128.1, 128.0, 127.4, 127.2, 125.7, 125.2, 113.4, 112.6, 67.2, 55.3, 45.3, 41.6, 41.4, 29.3, 29.1. HRMS (ESI) calcd for C₁₇H₂₆NO₃ [M+H]⁺ 292.1907, found 292.1903.

benzyl 7-bromo-3,4-dihydroisoquinoline-2(1H)-carboxylate (1s)

Br

Colorless oil. ¹H NMR (400 MHz, CDCl₃, rotomers seen) δ 7.44 – 7.33 (m, 5H), 7.33 – 7.22 (m, 2H), 7.03 (d, *J* = 8.0 Hz, 1H), 5.22 (s, 2H), 4.64 and 4.62 (s, 2H), 3.78 – 3.69 (m, 2H), 2.88 – 2.76 (m, 2H). ¹³C NMR (100 MHz, CDCl₃, rotomers seen) δ 155.4, 136.6, 135.6, 135.2, 133.6, 133.4, 130.5, 130.3, 129.6, 129.5, 129.2, 129.1, 128.6, 128.4, 128.2, 128.1, 120.1, 119.9, 67.4, 45.4, 41.5, 41.2, 28.6, 28.3. HRMS (ESI) calcd for C₁₅H₂₁N₂O₄ [M+H]⁺ 293.1496, found 293.1498.

General procedure to synthesize 2a-t and 4

An oven dried Schlenk tube was charged with substrate **1** or **3** (0.4 mmol) and $T^+BF_4^-$ (146 mg, 0.6 mmol). The tube was evacuated and backfilled with nitrogen (this process was repeated three times) and then CH₃CN (2 mL), TMSCN (75 µL, 0.6 mmol) and AcOH (23 µL, 0.4 mmol) were added successively by syringe. The reaction mixture was stirred at rt for 2-16 h. Upon consumption of the starting material, the reaction mixture was concentrated in vacuo to give the crude product, which was purified by flash column chromatography (elution: PE:EA = 5:1) to give the desired compound **2** or **4**.

Characterization of products

benzyl 1-cyano-3,4-dihydroisoquinoline-2(1H)-carboxylate (2a)

Yield: 97%. White solid, Mp: 88-89 °C. ¹H NMR (400 MHz, CDCl₃, rotomers seen) δ 7.47 – 7.34 (m, 5H), 7.33 – 7.26 (m, 3H), 7.24 – 7.15 (m, 1H), 6.13 and 5.97 (s, 1H), 5.28 – 5.19 (m, 2H), 4.33 and 4.17 (d, *J* = 12.4 Hz, 1H), 3.49 and 3.38 (t, *J* = 10.0 Hz, 1H), 3.04 – 2.91 (m, 1H), 2.88 and 2.84 (t, *J* = 3.6, 1H). ¹³C NMR (100 MHz, CDCl₃, rotomers seen) δ 154.9, 154.2, 135.7, 135.6, 134.5, 134.2, 129.6, 129.4, 129.0, 128.7, 128.5, 128.3, 128.2, 127.9, 127.9, 127.3, 127.1, 127.1, 118.0, 68.5, 68.3, 46.2, 40.1, 39.6, 29.7, 28.1, 28.0. HRMS (ESI) calcd for C₁₈H₁₇N₂O₂ [M+H]⁺ 293.1285, found 293.1286.

ethyl 1-cyano-3,4-dihydroisoquinoline-2(1*H*)-carboxylate (2b)

Yield: 93%. White solid, Mp: 93-94 °C. ¹H NMR (400 MHz, CDCl₃, rotomers seen) δ 7.34 – 7.26 (m, 3H), 7.24 – 7.17 (m, 1H), 6.12 and 5.98 (s, 1H), 4.38 – 4.08 (m, 3H), 3.44 and 3.35 (t, *J* = 8.8 Hz, 1H), 2.99 and 2.95 (dd, *J* = 10.8, 5.6 Hz, 1H), 2.87 and 2.83 (t, *J* = 3.6 Hz, 1H), 1.39 – 1.27 (m, 3H). ¹³C NMR (100 MHz, CDCl₃, rotomers seen) δ 155.0, 154.3, 134.5, 134.3, 129.6, 129.4, 128.9, 128.5, 128.0, 127.3, 127.1, 118.1, 62.7, 46.2, 46.1, 39.9, 39.3, 28.0, 14.6. HRMS (ESI) calcd for C₁₃H₁₅N₂O₂ [M+H]⁺ 231.1128, found 231.1123.

tert-butyl 1-cyano-3,4-dihydroisoquinoline-2(1H)-carboxylate (2c)

Yield 78%. White solid, Mp: 88-89 °C. ¹H NMR (400 MHz, CDCl₃, rotomers seen) δ 7.37 – 7.29 (m, 3H), 7.26 – 7.19 (m, 1H), 6.10 and 5.87 (s, 1H), 4.37 – 3.98 (m, 1H), 3.52 – 3.18 (m, 1H), 2.98 and 2.94 (dd, *J* = 10.8, 5.6 Hz, 1H), 2.86 and 2.82 (t, *J* = 3.6 Hz, 1H), 1.55 (s, 9H). ¹³C NMR (100 MHz, CDCl₃, rotomers seen) δ 153.9, 153.3, 134.6, 134.5, 129.4, 128.8, 128.1, 127.2, 127.1, 118.2, 82.2, 81.8, 46.6, 45.6, 40.1, 38.7, 28.3, 28.1. HRMS (ESI) calcd for C₁₅H₁₉N₂O₂ [M+H]⁺ 259.1441, found 259.1435.

phenyl 1-cyano-3,4-dihydroisoquinoline-2(1H)-carboxylate (2d)

Yield 89%. White solid, Mp: 119-120 °C. ¹H NMR (400 MHz, CDCl₃, rotomers seen) δ 7.43 (t, *J* = 7.6 Hz, 2H), 7.40 – 7.33 (m, 3H), 7.33 – 7.26 (m, 2H), 7.21 (t, *J* = 8.4 Hz, 2H), 6.25 and 6.21 (s, 1H), 4.45 – 4.35 (m, 1H), 3.76 – 3.45 (m, 1H), 3.19 – 2.91 (m, 2H). ¹³C NMR (100 MHz, CDCl₃,

rotomers seen) δ 153.5, 152.8, 150.9, 150.7, 134.4, 134.1, 129.7, 129.5, 129.4, 129.2, 128.3, 127.7, 127.5, 127.2, 127.1, 126.1, 126.0, 121.7, 121.6, 117.8, 46.7, 46.3, 40.7, 39.9, 28.1, 27.9. HRMS (ESI) calcd for C₁₇H₁₅N₂O₂ [M+H]⁺ 279.1128, found 279.1123.

allyl 1-cyano-3,4-dihydroisoquinoline-2(1H)-carboxylate (2e)

Yield: 93%. Colorless Oil. ¹H NMR (400 MHz, CDCl₃, rotomers seen) δ 7.34 – 7.24 (m, 3H), 7.24 – 7.16 (m, 1H), 6.18 – 5.88 (m, 2H), 5.42 – 5.30 (m, 1H), 5.26 (d, *J* = 10.4 Hz, 1H), 4.80 – 4.62 (m, 2H), 4.30 and 4.17 (d, *J* = 11.6 Hz, 1H), 3.47 and 3.34 (t, *J* = 9.2 Hz, 1H), 2.98 and 2.94 (dd, *J* = 10.6, 5.6 Hz, 1H), 2.90 – 2.80 (m, 1H). ¹³C NMR (100 MHz, CDCl₃, rotomers seen) δ 154.7, 153.9, 134.5, 134.8, 132.2, 129.6, 129.4, 129.0, 128.4, 128.0, 127.3, 127.1, 118.6, 118.4, 118.0, 67.2, 46.2, 40.0, 39.5, 28.0. HRMS (ESI) calcd for C₁₄H₁₅N₂O₂ [M+H]⁺ 243.1128, found 243.1133.

1-cyano-N,N-dimethyl-3,4-dihydroisoquinoline-2(1H)-carboxamide (2f)

Yield:81%. White solid, Mp: 120-121 °C. ¹H NMR (400 MHz, CDCl₃, rotomers seen) δ 7.33 – 7.24 (m, 3H), 7.22 – 7.17 (m, 1H), 5.58 (s, 1H), 3.82 – 3.74 (m, 1H), 3.48 and 3.45 (dd, *J* = 12.0, 4.0 Hz, 1H), 3.16 – 3.05 (m, 1H), 2.93 (s, 6H), 2.92 – 2.80 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 163.1, 134.1, 129.5, 129.2, 128.7, 127.3, 127.1, 118.8, 48.6, 43.5, 38.3, 28.0. HRMS (ESI) calcd for C₁₃H₁₆N₃O [M+H]⁺ 230.1288, found 230.1287.

2-acetyl-1,2,3,4-tetrahydroisoquinoline-1-carbonitrile (2g)

Yield: 86%. White solid, Mp: 107-108 °C. ¹H NMR (400 MHz, CDCl₃, rotomers seen) δ 7.37 – 7.26 (m, 3H), 7.25 – 7.18 (m, 1H), 6.45 (s, 1H), 3.95 and 3.92 (t, *J* = 4.8 Hz, 1H), 3.70 and 3.66 (dd, *J* = 8.8, 5.2 Hz, 1H), 3.04 – 2.90 (m, 2H), 2.21 (s, 3H). ¹³C NMR (100 MHz, CDCl₃, rotomers seen) δ 169.8, 169.2, 133.9, 129.7, 129.2, 129.0, 128.5, 127.6, 127.3, 126.9, 117.9, 117.5, 48.3, 43.5, 42.2, 37.5, 28. 5, 27.6, 21.8, 21.4. HRMS (ESI) calcd for C₁₂H₁₃N₂O [M+H]⁺ 201.1022, found 201.1024.

2-hexanoyl-1,2,3,4-tetrahydroisoquinoline-1-carbonitrile (2h)

Yield: 87%. Pale yellow oil. ¹H NMR (400 MHz, CDCl₃, rotomers seen) δ 7.36 – 7.26 (m, 3H), 7.24 – 7.18 (m, 1H), 6.48 (s, 1H), 4.00 and 3.96 (t, J = 4.4 Hz, 1H), 3.67 and 3.65 (dd, J = 13.6, 5.6 Hz, 1H), 3.03 – 2.93 (m, 2H), 2.53 – 2.30 (m, 2H), 1.77 – 1.61 (m, 2H), 1.39 – 1.30 (m, 4H),

0.91 (t, J = 6.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃, rotomers seen) δ 172.4, 135.0, 133.9, 129.8, 129.2, 129.0, 128.7, 127.9, 127.6, 127.4, 127.0, 118.1, 117.6, 47.7, 43.6, 41.5, 37.6, 33.6, 33.4, 31.5, 31.3, 28.6, 27.7, 24.6, 22.5, 14.0. HRMS (ESI) calcd for C₁₆H₂₁N₂O [M+H]⁺ 257.1648, found 257.1654.

2-pivaloyl-1,2,3,4-tetrahydroisoquinoline-1-carbonitrile (2i)

Yield 83%. White solid, Mp: 128-129 °C. ¹H NMR (400 MHz, CDCl₃, rotomers seen) δ 7.34 – 7.21 (m, 3H), 7.18 – 7.12 (m, 1H), 6.35 (s, 1H), 4.40 and 4.37 (d, J = 4.4 Hz, 1H), 3.62 – 3.49 (m, 1H), 3.02 and 2.98 (dd, J = 11.6, 5.2 Hz, 1H), 2.88 – 2.78 (m, 1H), 1.30 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 177.2, 133.6, 129.3, 128.8, 128.6, 127.4, 127.3, 118.3, 45.7, 42.2, 39.0, 28.5, 28.0. HRMS (ESI) calcd for C₁₅H₁₉N₂O [M+H]⁺ 243.1492, found 243.1496.

2-benzoyl-1,2,3,4-tetrahydroisoquinoline-1-carbonitrile (2j)

Yield 86%. White solid, Mp: 95-96 °C. ¹H NMR (400 MHz, CDCl₃, rotomers seen) δ 7.53 – 7.43 (m, 5H), 7.42 – 7.27 (m, 3H), 7.25 – 7.19 (m, 1H), 6.58 – 5.41 (m, 1H), 5.05 – 3.88 (m, 1H), 3.66 – 3.42 (m, 1H), 3.13 – 2.97 (m, 1H), 2.92 – 2.78 (m, 1H). ¹³C NMR (100 MHz, CDCl₃, rotomers seen) δ 171.0, 134.0, 133.7, 131.0, 129.6, 129.1, 128.9, 128.1, 127.5, 127.2, 117.9, 44.6, 43.3, 28.6. HRMS (ESI) calcd for C₁₇H₁₅N₂O [M+H]⁺ 263.1179, found 263.1184.

2-(2-chloroacetyl)-1,2,3,4-tetrahydroisoquinoline-1-carbonitrile (2k)

Yield 83%. White solid, Mp: 109-110 °C. ¹H NMR (400 MHz, CDCl₃, rotomers seen) δ 7.30 – 7.20 (m, 3H), 7.17 – 7.11 (m, 1H), 6.28 (s, 1H), 4.11 (dd, *J* = 32.7, 12.5 Hz, 2H), 4.00 – 3.92 (m, 1H), 3.67 and 3.64 (dd, *J* = 10.4, 3.6 Hz, 1H), 3.07 and 3.03 (dd, *J* = 10.8, 5.4 Hz, 1H), 2.92 and 2.88 (t, *J* = 3.6 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃, rotomers seen) δ 166.1, 133.6, 129.3, 129.2, 127.7, 127.6, 127.3, 117.4, 44.2, 42.1, 40.8, 28.4. HRMS (ESI) calcd for C₁₂H₁₂ClN₂O [M+H]⁺ 235.0633, found 235.0635.

2-acryloyl-1,2,3,4-tetrahydronaphthalene-1-carbonitrile (2l)

Yield: 82%. White solid, Mp: 104-105 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.34 – 7.21 (m, 3H), 7.19 – 7.09 (m, 1H), 6.57 and 6.53 (d, J = 10.4 Hz, 1H), 6.40 and 6.36 (s, 2H), 5.78 (d, J = 10.4 Hz, 1H), 4.11 – 3.91 (m, 1H), 3.75 – 3.54 (m, 1H), 3.00 – 2.83 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 165.8, 133.9, 130.5, 129.2, 129.1, 128.5, 127.6, 127.4, 126.3, 117.7, 44.0, 41.8, 28.6.

HRMS (ESI) calcd for $C_{13}H_{13}N_2O[M+H]^+$ 213.1022, found 213.1018.

2-(cyclopropanecarbonyl)-1,2,3,4-tetrahydroisoquinoline-1-carbonitrile (2m)

Yield: 86%. White solid, Mp: 117-118 °C. ¹H NMR (400 MHz, CDCl₃, rotomers seen) δ 7.40 – 7.28 (m, 3H), 7.23 (d, *J* = 6.8 Hz, 1H), 6.37 and 6.11 (s, 1H), 4.68 – 4.15 (m, 1H), 3.91 – 3.66 (m, 1H), 3.14 – 2.82 (m, 2H), 1.90 – 1.78 (m, 1H), 1.28 – 1.01 (m, 2H), 1.00 – 0.78 (m, 2H). ¹³C NMR (100 MHz, CDCl₃, rotomers seen) δ 173.0, 134.3, 129.7, 129.2, 129.0, 128.9, 127.5, 127.3, 127.0, 118.0, 47.4, 44.1, 41.6, 38.1, 28.6, 27.8, 11.3, 8.6, 8.1. HRMS (ESI) calcd for C₁₄H₁₅N₂O [M+H]⁺ 227.1179, found 227.1184.

2-tosyl-1,2,3,4-tetrahydroisoquinoline-1-carbonitrile (2n)

Yield: >99%. White solid, Mp: 114-115 °C. ¹H NMR (400 MHz, CDCl₃, rotomers seen) δ 7.80 (d, J = 8.4 Hz, 2H), 7.36 (d, J = 8.4 Hz, 2H), 7.32 – 7.22 (m, 3H), 7.18 – 7.13 (m, 1H), 5.89 (s, 1H), 4.11 – 4.03 (m, 1H), 3.23 – 3.04 (m, 2H), 2.87 – 2.79 (m, 1H), 2.43 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 144.7, 134.3, 133.1, 130.0, 129.7, 129.2, 128.0, 127.8, 127.4, 127.0, 116.1, 47.1, 40.8, 28.1, 21.7. HRMS (ESI) calcd for C₁₇H₁₇N₂O₂S [M+H]⁺ 313.1005, found 313.1009.

2-(methylsulfonyl)-1,2,3,4-tetrahydroisoquinoline-1-carbonitrile (20)

Yield: >99%. Colorless oil. ¹H NMR (400 MHz, CDCl₃, rotomers seen) δ 7.31 – 7.21 (m, 3H), 7.17 (d, *J* = 7.2 Hz, 1H), 5.80 (s, 1H), 4.00 and 3.97 (d, *J* = 6.0 Hz, 1H), 3.33 and 3.30 (dd, *J* = 12.4, 3.6 Hz, 1H), 3.11 and 3.07 (dd, *J* = 11.6, 6.0 Hz, 1H), 3.02 (s, 3H), 2.90 – 2.82 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 133.1, 129.8, 129.3, 127.5, 127.3, 127.1, 117.0, 47.1, 40.7, 37.7, 28.3. HRMS (ESI) calcd for C₁₀H₁₂NO₂S [M-CN]⁺ 210.0583, found 210.0584.

benzyl 1-cyano-6-methoxy-3,4-dihydroisoquinoline-2(1H)-carboxylate (2p)

Yield: 83%. Colorless oil. ¹H NMR (400 MHz, CDCl₃, rotomers seen) δ 7.45 – 7.28 (m, 5H), 7.23 – 7.14 (m, 1H), 6.81 (dd, J = 8.4, 2.0 Hz, 1H), 6.74 – 6.65 (m, 1H), 6.06 and 5.92 (s, 1H), 5.21 (s, 2H), 4.27 and 4.11 (d, J = 12.4 Hz, 1H), 3.77 (s, 3H), 3.47 and 3.36 (t, J = 10.0 Hz, 1H), 2.99 – 2.86 (m, 1H), 2.83 and 2.79 (t, J = 3.6 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃, rotomers seen) δ 159.8, 154.9, 154.2, 136.0, 135.8, 135.7, 128.7, 128.5, 128.3, 128.3, 120.5, 120.0, 118.2, 114.1, 113.6, 113.5, 68.4, 68.3, 55.5, 45.9, 40.0, 39.6, 28.4, 28.3. HRMS (ESI) calcd for C₁₉H₁₉N₂O₃

[M+H]⁺ 323.1390, found 323.1396.

benzyl 1-cyano-6,7-dimethoxy-3,4-dihydroisoquinoline-2(1H)-carboxylate (2q)

Yield 86%. White solid, Mp: 129-130 °C. ¹H NMR (400 MHz, CDCl₃, rotomers seen) δ 7.49 – 7.31 (m, 5H), 6.73 (d, J = 16.4 Hz, 1H), 6.64 (s, 1H), 6.06 and 5.90 (s, 1H), 5.22 (s, 2H), 4.36 and 4.21 (d, J = 12.4 Hz, 1H), 3.87 (s, 6H), 3.43 and 3.33 (t, J = 10.4 Hz, 1H), 2.99 – 2.83 (m, 1H), 2.81 – 2.68 (m, 1H). ¹³C NMR (100 MHz, CDCl₃, rotomers seen) δ 154.9, 154.1, 149.4, 148.4, 135.8, 128.7, 128.5, 128.4, 128.2, 126.7, 126.4, 119.8, 119.2, 118.1, 111.5, 109.2, 109.1, 68.5, 68.3, 56.1, 56.0, 46.0, 40.0, 39.5, 27.6. HRMS (ESI) calcd for C₂₀H₂₁N₂O₄ [M+H]⁺ 353.1496, found 353.1499.

benzyl 1-cyano-7-nitro-3,4-dihydroisoquinoline-2(1H)-carboxylate (2r)

Yield 97%. White solid, Mp: 156-157 °C. ¹H NMR (400 MHz, CDCl₃, rotomers seen) δ 8.23 (d, J = 20.0 Hz, 1H), 8.16 (dd, J = 8.4, 1.6 Hz, 1H), 7.47 – 7.30 (m, 6H), 6.31 and 6.12 (s, 1H), 5.25 (s, 2H), 4.43 and 4.29 (d, J = 10.8 Hz, 1H), 3.50 and 3.38 (t, J = 8.4 Hz, 1H), 3.15 – 2.89 (m, 2H). ¹³C NMR (100 MHz, CDCl₃, rotomers seen) δ 154.7, 153.8, 146.9, 142.0, 141.8, 135.4, 135.3, 130.9, 130.7, 130.0, 129.5, 128.8, 128.4, 123.8, 122.6, 116.9, 68.7, 46.0, 39.3, 38.8, 28.3. HRMS (ESI) calcd for C₁₈H₁₆N₃O₄ [M+H]⁺ 338.1135, found 338.1134.

benzyl 7-bromo-1-cyano-3,4-dihydroisoquinoline-2(1H)-carboxylate (2s)

Yield >99%. White solid, Mp: 124-125 °C. ¹H NMR (400 MHz, CDCl₃, rotomers seen) δ 7.53 – 7.30 (m, 7H), 7.07 (d, *J* = 7.6 Hz, 1H), 6.11 and 5.94 (s, 1H), 5.22 (s, 2H), 4.34 and 4.19 (d, *J* = 11.6 Hz, 1H), 3.43 and 3.32 (t, *J* = 9.6 Hz, 1H), 2.97 – 2.74 (m, 2H). ¹³C NMR (100 MHz, CDCl₃, rotomers seen) δ 154.7, 153. 9, 135.5, 135.4, 133.4, 133.1, 132.1, 131.1, 131.0, 130.2, 129.9, 128.7, 128.5, 128.2, 120.6, 117.3, 68.4, 45.7, 39.7, 39.2, 27.6. HRMS (ESI) calcd for C₁₈H₁₆BrN₂O₂ [M+H]⁺ 371.0390, found 371.0381.

benzyl 1-cyano-3,4-dihydro-1H-pyrido[3,4-b]indole-2(9H)-carboxylate (2t)

Yield 41%. Pale yellow dope . ¹H NMR (400 MHz, CDCl₃, rotomers seen) δ 8.27 and 8.17 (s, 1H), 7.50 (t, J = 7.6 Hz, 1H), 7.43 - 7.31 (m, 6H), 7.28 - 7.21 (m, 2H), 7.15 (t, J = 7.2 Hz, 1H), 6.25

and 6.07 (s, 1H), 5.26 (s, 2H), 4.65 and 4.51 (dd, J = 12.4, 2.8 Hz, 1H), 3.45 – 3.24 (m, 1H), 2.95 – 2.74 (m, 2H). ¹³C NMR (100 MHz, CDCl₃, rotomers seen) δ 155.3, 154.2, 136.6, 135.6, 128.7, 128.6, 128.4, 128.2, 126.1, 123.5, 123.0, 120.3, 118.8, 116.4, 111.5, 111.1, 68.6, 43.1, 40.6, 40.2, 21.0, 20.7. HRMS (ESI) calcd for C₂₀H₁₆N₃O₂ [M-H]⁻ 330.1248, found 330.1247.

isochroman-1-carbonitrile (4)

Yield: 79%. Colorless oil. ¹H NMR (400 MHz, CDCl₃, rotomers seen) δ 7.33 – 7.26 (m, 2H), 7.23 – 7.16 (m, 2H), 5.65 (s, 1H), 4.22 – 4.08 (m, 2H), 3.07 and 3.03 (dd, J = 10.0, 6.4 Hz, 1H), 2.79 and 2.75 (t, J = 3.2 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 133.0, 129.5, 129.1, 128.7, 127.1, 125.5, 118.1, 65.3, 63.3, 27.2. HRMS (ESI) calcd for C₁₀H₁₀NO [M+H]⁺ 160.0757, found.160.0757

References

[S1] Richter, H.; Mancheno, O. G. Eur. J. Org. Chem. 2010, 4460.

Copies of ¹H NMR and ¹³C NMR spectra for new compounds

S17

