Electronic Supplementary Information for

Bismuth Tungstate Incorporated Zirconium Metal-

Organic Framework Composite with Enhanced

Visible-light Photocatalytic Performance

Zhou Sha,^{a,b} Jiulong Sun,^{a,b} Hardy Sze On Chan,^a Stephan Jaenicke^{a,b,**}, Jishan

Wu^{a,b,*}

^a Department of Chemistry, National University of Singapore, 3 Science Drive 3,

Singapore 117543

^b NUS Environmental Research Institute, National University of Singapore, 5A

Engineering Drive 1, #02-01, Singapore 117411

Fig. S1 XRD patterns of (a) BWO/UiO-66-0.1, BWO/UiO-66-0.5, BWO/UiO-66-2, and (b) pristine Bi_2WO_6 .

Fig. S2 SEM images of pristine Bi_2WO_6 (scale bars are 5 µm in (a), and 500 nm in (b)).

Fig. S3 EDX spectra of the corresponding measure spots in the TEM image of BWO/UiO-66-1 (scale bar is 100 nm). Inserts in the spectra show the contents of corresponding elements (copper element is due to the TEM grid).

Fig. S4 TEM images of pristine Bi_2WO_6 (scale bars are 50 nm in (a), and 20 nm in (b)).

Fig. S5 Nitrogen adsorption-desorption isotherms and pore size distributions (inset) of (a) pristine UiO-66, (b) BWO/UiO-66-0.1, (c) BWO/UiO-66-0.5, (d) BWO/UiO-66-1, (e) BWO/UiO-66-2, and (f) pristine Bi_2WO_6 .

Fig. S6 Four cycles of the RhB degradation in the presence of BWO/UiO-66-1 under visible-light irradiation.

Fig. S7 Crystal structural illustration of UiO-66. Zirconium, oxygen, carbon, and hydrogen atoms are represented in red, blue, black, and gray, respectively. The large yellow sphere represents the enclosed cavity.

Fig. S8 Photoluminescence spectral changes with visible-light irradiation time in the presence of BWO/UiO-66-1 in a 5×10^{-4} M basic solution of terephthalic acid.