Supporting Information

Performance comparison of two cascade reaction models in fluorescence *off-on* detection of hydrogen sulfide

Tanmoy Saha,^a Dnyaneshwar Kand,^a and Pinaki Talukdar*^a

^{*a*} Department of Chemistry, Indian Institute of Science Education and Research, Pune, India.

Contents		Page Number	
I.	Estimation of ClogP Values	S1	
II.	Photophysical Studies	S2 - S4	
III.	H ₂ S Sensing	S4 - S10	
IV.	NMR Titration	S11 – S13	
V.	Cell Imaging	S13 - S14	
VI.	NMR Spectra	S15 - S18	
VII.	HPLC Purity	S19	

I. Estimation of Clog*P* Values

Fig. S1 Structures of probes and their ClogP values.

II. Photophysical Studies:

Procedures:

Preparation of the medium: All experiments were carried out either in Deionized water or in Phosphate buffer (10 mM, pH = 7.4) with 1% DMSO (maximum). Phosphate buffer (PB) was prepared by dissolving measured amount of solid Na_2HPO_4 and NaH_2PO_4 in deionized water.

Preparation of the solution of Reso-N₃, Reso-Br and Resorufin 7: A stock solution of **Reso-Br** and **Reso-** N_3 (500 µM) were prepared in THF and Resorufin 7 (1000 µM) was prepared in DMSO. The final concentration of each of **Reso-Br, Reso-** N_3 and Resorufin 7 during each assay was 10 µM with 2% THF or DMSO (maximum).

Preparation of the solution of analytes: Stock solutions of NaCl, NaBr, NaI, NaF, Na₂SO₃, Na₂SO₄, Na₂S₂O₃, NaSCN, Alanine (Ala), Serine (Ser), Cysteine (Cys), Glutathione (GSH), NaOH, NaNO₂, NaNO₃, were prepared in Deionized water (concentrations 20 mM). Calculated volumes of analytes were added from respective stock solutions to each fluorescence cuvette. All spectral data were recorded at 10 min after the addition of analyte(s) by exciting at 540 nm. The excitation and emission slit width were 2 nm and 3 nm, respectively.

Absorption spectra, emission spectra and determination of molar extinction coefficient of Reso-N₃, Reso-Br and Resorufin 7:

Absorption spectra of **Reso-N₃** (10 μ M), **Reso-Br** (10 μ M) and Resorufin 7 (10 μ M) were recorded in the Water (Fig. S2). From absorption spectra, molar extinction coefficient of **Reso-Br**, **Reso-N₃** and resorufin 7 were determined using Beer-Lambert law.

Fig. S2 UV-vis absorption spectra of Reso-N₃ (10 μ M), Reso-Br (10 μ M) and Resorufin 7 (10 μ M) recorded in water.

When fluorescence intensities of **Reso-N₃**, **Reso-Br** and Resorufin 7 were compared at $\lambda_{ex} = 540$ nm, Resorufin 7 was found stronger fluorescent than that of **Reso-Br** and **Reso-N₃** at identical condition (Fig. S3).

Fig. S3 Comparison of fluorescence intensities of **Reso-N₃**, **Reso-Br** and Resorufin 7 (10 μ M each) recorded in water ($\lambda_{ex} = 540$ nm).

Fig. S4 Comparison of fluorescence intensities of **Reso-N**₃ (**A**) and **Reso-Br** (**B**), before and after addition of Na₂S (5 mM) recorded in water ($\lambda_{ex} = 540$ nm).

III. H₂S Sensing

Reaction kinetics of probes upon H₂S sensing:

Fluorescence spectra of **Reso-N**₃ and **Reso-Br** (10 μ M) were recorded at definite time interval after addition of Na₂S (5 mM) in water. The fluorescence intensity at 585 nm of each spectrum were recorded ($\lambda_{ex} = 540$ nm) and plotted against time. Rate constant, *k* and reaction time for 50% completion ($t_{1/2}$) for each probe were determined according to the following equation.

$$Y = a \times [1 - e^{-(kt)}]$$
Eq. S1

Where, Y = Fluorescence intensity, a = arbitrary constant, k = pseudo first order rate constant, t = time.

Half-life of the reaction $(t_{1/2})$ was calculated using Equation (S2)

$$t_{1/2} = 0.693/k$$
 Eq. S2

Where k = pseudo first order rate constant

Fig. S5 Kinetics plot of **Reso-N**₃ (**A**) and **Reso-Br** (**B**), 10 μ M with Na₂S (5 mM) in water. Fluorescence intensity recorded at 585 nm ($\lambda_{ex} = 540$ nm) from each spectra.

Similarly the rate of the sensing process of **Reso-N₃** in phosphate buffer (pH = 7.4) was determined (Fig. 8 and S6).

Fig. S6 Kinetics plot of **Reso-N**₃ (10 μ M) with Na₂S (5 mM) in phosphate buffer (pH = 7.4). Fluorescence intensity recorded at 585 nm ($\lambda_{ex} = 540$ nm) from each spectra.

Determination of detection limits of probes towards H₂S sensing in water:

The detection limits were determined based on the fluorescence titrations of **Reso-N₃** and **Reso-Br** (10 μ M). To determine the *S/N* ratio, the emission intensity of **Reso-N₃** and

Reso-Br were measured without H₂S by 6-times and the standard deviations of blank measurements were calculated. Under these conditions, good linear relationships between the fluorescence intensities and the H₂S concentrations (Fig. S7) were obtained for **Reso-N₃** (R = 0.992) and **Reso-Br** (R = 0.993). Detection limits were then calculated with the equation: detection limit = $3\sigma/m$, where σ is the standard deviation of 6 blank measurements, *m* is the slope between intensity versus Na₂S concentration. The detection limits of **Reso-N₃** and **Reso-Br** towards H₂S were calculated to be 0.44×10^{-6} and 0.58×10^{-6} M respectively at *S/N* = 3 (signal-to-noise ratio of 3:1).

Fig. S7 Linear relationship between fluorescence intensity at 585 nm *versus* concentration of Na₂S added in Water for **Reso-N₃**(**A**) and **Reso-Br**(**B**).

Reso N ₃				
Reading 1	8287.36415			
Reading 2	8755.60198			
Reading 3	8826.09059			
Reading 4	8221.74833			
Reading 5	8518.18064			
Reading 6	8273.53117			
Standard deviation (σ)	262.1540489			
Slope (m)	17791900			
Detection Limit (3σ/m)	0.000442081	mМ		
	0.44	μM		

Table S1. Calculation of detection limit for Reso-N3 in water.

Reso Br				
Reading 1	17692.6116			
Reading 2	17004.79289			
Reading 3	17500.99528			
Reading 4	17919.98993			
Reading 5	17867.55327			
Reading 6	18359.19323			
Standard deviation (σ)	354.9714082			
Slope (m)	1830470			
Detection Limit (3σ/m)	0.000581771	mM		
	0.58	μM		

Table S2. Calculation of detection limit for Reso-Br in water.

Fluorescence spectra recorded for the selectivity studies of Probes:

Selectivity and inertness of **Reso-N₃** and **Reso-Br** towards other analytes were also confirmed by the UV-visible spectroscopy. Fluorescence spectra were recorded ($\lambda_{ex} = 540$ nm) after 10 minutes of mixing a probe (10 µM) with various analytes (5 mM). The emission profile was observed for each case was unchanged and identical with the emission spectra of probes (Fig. S8). Addition of Na₂S (200 µM) in the same solutions resulted increment in fluorescence intensities identical to the emission spectra of **7**. This data also confirms the selectivity of **Reso-N₃** and **Reso-Br** towards H₂S in the presence of other analytes.

Fig. S8 Emission spectra of Reso-N₃ and Reso-Br (10 μ M) in presence of various analytes (5 mM, red colored) and in the same solution Na₂S (5 mM, blue colored) in water. Less

increments of intensity were observed in the case of Cys and GSH after addition of H_2S , represented by green and orange line in each spectrum.

The bar diagrams for selectivity studies (Fig. 7 and 10A) were normalized according to Eq. S3.

Relative Fluorescence Int. =
$$(I_{\rm M} - I_0)/I_0$$
 Eq. S3

Where, $I_{\rm M}$ = Fluorescence intensity of probes at 585 nm after addition of different analyte. I_0 = Fluorescence intensity of probes at 585 nm without the addition of analyte.

Stability of probes in buffered medium:

To evaluate the stability of probes in buffered system fluorescence spectra was recorded for both the probe (10 uM) in phosphate buffer (5 mM, pH = 7.4) with time. The background fluorescence of **Reso-N₃** is negligible and did not increase with time. But for **Reso-Br** the fluorescence intensity of the probe was considerable and found to be increased with increasing time.

Fig. S9 Emission spectra of **Reso-N₃** and **Reso-Br** (10 μ M) in phosphate buffer (5 mM, pH = 7.4), recorded at definite time intervals. Bar diagram plotted by taking the intensity at 585 nm in each case ($\lambda_{ex} = 540$ nm).

Fig. S10 Emission spectra of **Reso-Br** (10 μ M) in different system in presence and in absence of CTAB ($\lambda_{ex} = 540$ nm). Each data was recorded after 10 minutes of addition.

Scheme S1. Mechanism of decomposition of Reso-Br in aqueous buffer conditions.

Determination of detection limit of Reso-N₃ towards H₂S sensing in Phosphate Buffer:

The detection limit of **Reso-N₃** towards H₂S sensing in phosphate buffer (5 mM, pH = 7.4) was determined based on fluorescence titrations as stated above. A linear relationships between the fluorescence intensities and the H₂S concentrations (Fig. S11) was obtained for **Reso-N₃** (R = 0.98095). Detection limit was then calculated with the equation: detection limit = $3\sigma/m$, where σ is the standard deviation of 6 blank measurements, *m* is the slope between intensity versus Na₂S concentration. The detection limits of **Reso-N₃** towards H₂S in phosphate buffer was calculated to be 4.15×10^{-6} M at S/N = 3 (signal-to-noise ratio of 3:1).

Fig. S11 Linear relationship between fluorescence intensity of Reso-N₃ at 585 nm *versus* concentration of Na₂S added in phosphate buffer (5 mM, pH = 7.4).

Table S3. Calculation of detection limit for Reso-N₃ in Phosphate Buffer (5 mM, pH = 7.4).

Reading 1	14422.29411
Reading 2	15244.04831
Reading 3	14622.43376
Reading 4	14933.63767
Reading 5	14354.08278
Reading 6	14594.16937
Standard deviation (σ)	335.9844159
Slope (m)	242517
Detection Limit (3 _{\sigma/m})	0.004156217 mM
	<mark>4.156216875</mark> uM

Interaction of Resorufin 7 with Glutathione:

Glutathione was added to the solution of Resorufin 7 in phosphate buffer (5 mM, pH = 7.4) and fluorescence spectra were recorded before and after addition of glutathione.

Fig. S12 Emission spectra of Resorufin **7** (10 μ M) before and after addition of GSH in phosphate buffer (5 mM, pH = 7.4). Fluorescence spectra were acquired after 10 min of the addition of GSH.

Quantitative detection of H₂S in water sample:

Water sample was collected from the tap and definite amount of Na₂S was added to it. 10 μ M of each probe were added to those water samples and fluorescence spectra were acquired (after 10 min). Intensity at 585 nm ($\lambda_{ex} = 540$ nm) were recorded from each spectrum and plotted to a bar diagram with increasing concentration of Na₂S added (Fig. 6).

IV. NMR Titration:

The H₂S mediated reduction of azide to amine followed by cyclization mechanism was studied by ¹H NMR titration (Fig. S13). **Reso-N₃** was titrated with increasing concentrations of Na₂S (0, 0.4, 1 and 2.0 equivalents) in deuterodimethylsulfoxide (DMSO-*d*₆) at room temperature and ¹H NMR spectra were recorded after 5 min of each addition. Signals corresponding to aromatic protons were monitored during the course of titration. With increasing equivalents of Na₂S, doublet at $\delta = 7.45$ ppm (H_a protons) for **Reso-N₃** were disappeared with simultaneous increment of new doublet peak at $\delta = 7.3$ ppm (H_a² protons), corresponding to Resorufin **7** (Fig S13). Similarly, doublet of doublet peak at $\delta = 6.8$ ppm (H_b) and doublet peak at $\delta = 6.3$ ppm (H_c) for **Reso-N₃** were decreased and new peak at $\delta = 6.4$ ppm (H_b³) and $\delta = 5.9$ ppm (H_c³) corresponding to Resorufin **7** were appeared.

Fig. S13 ¹H NMR spectral change of **4** upon addition of Na₂S. (i) **4** only, (ii) **4** and 0.4 equiv. Na₂S, (iii) **4** and 0.8 equiv. Na₂S and (iv) **4** and 2.0 equiv. Na₂S. in CD₃CN at 25 $^{\circ}$ C.

The nucleophilic substitution-cyclization mechanism was studied by ¹H NMR titration (Fig. S14). **Reso-Br** was titrated with increasing concentrations of Na₂S (0, 0.4, 1 and 2.0 equivalents) in deuterodimethylsulfoxide (DMSO- d_0) at room temperature and ¹H NMR spectra were recorded after 5 min of each addition. Signals corresponding to aromatic protons were monitored during the course of titration. With increasing equivalents of Na₂S, doublet at $\delta = 7.45$ ppm (H_a protons) for **Reso-Br** were disappeared with simultaneous increment of new doublet peak at $\delta = 7.3$ ppm (H_{a'} protons), corresponding to Resorufin **7** (Fig S14). Similarly, doublet of doublet peak at $\delta = 6.8$ ppm (H_b) and doublet peak at $\delta = 6.3$ ppm (H_c) for **Reso-Br** were decreased and new peak at $\delta = 6.4$ ppm (H_{b'}) and $\delta = 5.9$ ppm (H_{c'}) corresponding to Resorufin **7** were appeared.

Fig. S14 ¹H NMR spectral change of 4 upon addition of Na₂S. (i) 4 only, (ii) 4 and 0.4 equiv. Na₂S, (iii) 4 and 0.8 equiv. Na₂S and (iv) 4 and 2.0 equiv. Na₂S. in CD₃CN at 25 $^{\circ}$ C.

V. Cell Imaging:

HeLa cells were purchased from National Centre for Cell Science, Pune (India). HeLa cells were grown in DMEM supplemented with 10% heat inactivated fetal bovine serum (FBS), 100 IU/ml penicillin, 100 mg/ml streptomycin and 2 mM L-glutamine. Cultures were maintained in a humidified atmosphere with 5% CO₂ at 37 °C. The cultured cells were subcultured twice in each week, seeding at a density of about 2×10^4 cells/mL. Typan blue dye exclusion method was used to determine Cell viability. The fluorescence images were taken using an Olympus Inverted IX81 equipped with a Hamamatsu Orca R2 microscope by exciting at $\lambda_{ex} = 535-555$ nm (by using RFP filter).

The HeLa cells were incubated with solution of the **Reso-N**₃ (10 μ M in 1:100 DMSO-PBS v/v, pH = 7.4) at 37 °C for 20 min. After rinsing with PBS the fluorescence images were taken. In this case less significant fluorescence was observed. Another set of HeLa cells were pre-incubated with **Reso-N**₃ (10 μ M in 1:100 DMSO-PBS v/v, pH = 7.4) at 37 °C for 20 min followed by washing with PBS and incubation with Na₂S (100 μ M in 1:100 DMSO-PBS v/v,

pH = 7.4) at 37 °C for 20 min. After washing with PBS the fluorescence images showed strong red fluorescence (Fig. 11).

For measuring the intensity of cell fluorescence quantitatively, HeLa cells were first incubated with **Reso-N₃** (5 μ M, at 37 °C for 30 min) the plate was thoroughly washed with PBS and placed under the microscope fitted with an incubator. The images were taken in 5 min time intervals after addition of Na₂S (100 μ M). Five different region of interest (ROI) were selected and the intensity was obtained by using *image j* software. The average intensity of ROIs for each image was plotted in a bar diagram (Fig. 12F). The data presented in Fig. 12, Fig. S13 and Fig. S14 corresponds to 3 different set of experiment.

Fig. S15 Fluorescence images of HeLa cell acquired at different time intervals (0, 5, 10, 15 and 20 min) after incubating with Na₂S (A-E). Bar diagram was plotted by the average pixel intensity of selected ROI's *versus* time (**F**).

Fig. S16 Fluorescence images of HeLa cell acquired at different time intervals (0, 5, 10, 15 and 20 min) after incubating with Na₂S (A-E). Bar diagram was plotted by the average pixel intensity of selected ROI's *versus* time (**F**).

VI. NMR Spectra.

Fig. S22 ¹³C NMR of 9 in Methanol-d₄.

VII. HPLC Purity:

Column: Phenomenex (4.6 mm \times 250 mm)

Flow: 1.0 mL/min

Method: Gradient

20 % Acetonitrile/water 0 min

100 % Acetonitrile 0 to10 min

100 % Acetonitrile 10 to 15 min

20 % Acetonitrile/water 15 to 20 min

20 % Acetonitrile/water 20 to 25 min

Wavelength: 250 nm.

Rentention time (t_R): **Reso-Br** = 11.38 min.

Reso- $N_3 = 111.32 \text{ min}$

Fig. S25 HPLC Purity of Reso-N₃ (A) and Reso-Br (B).