Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2015

Interactions In Globular Proteins With Polyampholyte: Coacervation Route For Protein Separation

Jyotsana Pathak¹, Kamla Rawat^{2, 3*} V. K. Aswal⁴ and H.B.Bohidar^{1,2*}

¹Polymer and Biophysics Laboratory, School of Physical Sciences, Jawaharlal Nehru University,

New Delhi 110067, India

²Special Center for Nanosciences, Jawaharlal Nehru University, New Delhi 110067, India

³Inter University Accelerator Centre (IUAC), New Delhi 110067, India

⁴Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai-400085, India

*Corresponding author emails: <u>bohi0700@mail.jnu.ac.in</u>, <u>kamla.jnu@gmail.com</u>

Supporting Information

Figure S1. Phase boundaries of binding of BSA and β -Lg with GB deduced from data shown in Figure 2.

Figure S2. (a) Determination of coacervation transition of BSA–GB- β -Lg at various stoichiometric binding ratios (b) area of coacervation of BSA–GB- β -Lg system at various β -Lg concentration.

Figure S3 Far-UV circular dichroism spectra of (a) BSA and (b) β -Lg in presence and absence of GB in the wavelength range 200 to 260 nm.

Figure S4. (b) Far-UV Circular dichroism spectra of BSA and BSA/ GB in presence of different EOH in the wavelength range 200 to 260 nm.