Comparative Study of Ring-Opening Polymerization of *L*-Lactide and *\varepsilon*-Caprolactone Using Zirconium Hexadentate Bis(aminophenolate) Complexes as Catalysts

Hsiu-Wei Ou,^a Michael Y. Chiang,^b Jaya Kishore Vandavasi,^a Wei-Yi Lu,^a Yen-Jen Chen,^a Hsi-Ching Tseng,^a Yi-Chun Lai,^a Hsuan-Ying Chen^{*a}

^aDepartment of Medicinal and Applied Chemistry, Kaohsiung Medical University,

Kaohsiung 80708, Taiwan, R.O.C.

^b Department of Chemistry, National Sun Yat-sen University, Kaohsiung, Taiwan, 80424, R.O.C.

Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, R.O.C.

Electronic supplementary information available: Polymer characterization data, and details of the kinetic study.

Table of Contents

Table S1 The variations of [PCL] in ROP process with Zr complexes in CDCl ₃ 1 mL,
[CL] = 1.0 M in a sealed NMR tube at 100 °C
Figure S1 First-order kinetic plots for CL polymerizations in CDCl ₃ with time with
different Zr complexes
Table S2 The variations of [PLA] in ROP process with Zr complexes in CDCl ₃ 1 mL,
[LA] = 1.0 M in a sealed NMR tube at 100 °C5
Figure S2 First-order kinetic plots for CL polymerizations in CDCl ₃ with time with
different Zr complexes
Details of the Kinetic Study of E-CL and L-Lactide Polymerization7

Figure S3 First-order kinetic plots for CL polymerizations with time in toluene (5 m	ıL)
with different concentration of L ^{OMe} Zr(OBn) ₂ .	8
Table S3 The variations of [CL] in ROP process with a wide range of L ^{OMe} Zr(OBn)2
in toluene 5 mL, [CL] = 2.0 M at room temperature.	8
Figure S4 Linear plot of $\ln k_{obs}$ vs $\ln [L^{OMe}Zr(OBn)_2]$ for the polymerization of CL	
with $[CL] = 2.0 \text{ M}$ in toluene (5 mL) at room temperature.	. 9
Figure S5 First-order kinetic plots for LA polymerizations with time in CDCl ₃ (1 m)	L)
with different concentration of L ^{OMe} Zr(OBn) ₂	10
Table S4 The variations of [PLA] ^a in ROP process with a wide range of	
$L^{OMe}Zr(OBn)_2$ in CDCl ₃ 1 mL, [LA] = 1.25 M at 100 °C.	11
Figure S6 Linear plot of k_{obs} vs [L ^{OMe} Zr(OBn) ₂] for the polymerization of LA with	
[LA] = 1.25 M in CDCl ₃ (1 mL) at 100 °C 1	1
Figure S7-24 The ¹ H and ¹³ C NMR spectrum of Zr complexes12-2	20

О	OMe		F	NI	Me2	H	Bn
Time(h)	Conv.(%)	Time(h)	Conv.(%)	Time(h)	Conv.(%)	Time(h)	Conv.(%)
0	0	0	0	0	0	0	0
5	20.79	4	38.79	4	20.10	4	29.36
9	24.87	5	47.64	5	23.23	5	34.99
20	46.72	6	50.70	9	32.00	6	37.40
28	61.12	7	54.14	17	49.47	7	40.36
32	65.24	9	60.83	20	58.33	9	46.10
42	74.25	11	67.05	28	72.46	11	54.98
52	80.99			32	73.64	14	61.13
60	83.64					17	68.73
70	87.36					20	72.39
85	90.28					28	85.93
			k _{obs} (er	ror), \mathbb{R}^2			
0.02816	(95), 0.99	0.09886(0.09886(674), 0.99		161), 0.99	0.06617(181), 0.99
ł	Fu]]	Th		у		
Time(h)	Conv.(%	Time(h)	Conv.(%)	Time(h)	Conv.(%		
0	0	0	0	0	0	-	
4	49.39	4	49.40	4	3.89		
5	53.59	5	53.01	5	5.94		
6	57.41	6	58.07	9	9.88		
7	60.27	7	62.54	20	24.66		
9	65.13	9	70.82	28	36.75		
11	69.91	11	74.66	32	41.31		
14	77.32	14	82.69	42	52.81		
17	81.73	17	87.74	52	61.71		

Table S1. The variations of [PCL] in ROP process with Zr complexes in CDCl₃1 mL, [CL] = 1.0 M in a sealed NMR tube at 100 °C. [CL] : [cat.] = 100:1

Figure S1 First-order kinetic plots for CL polymerizations with time with different Zr complexes

OMe		F		NMe2		Ру	
Time(h)	Conv.(%)	Time(h)	Conv.(%)	Time(h)	Conv.(%)	Time(h)	Conv.(%
0	0	0	0	0	0	0	0
0.066667	11.96	6	30.39	8	34.44	0.016667	10.29
0.116667	13.10	8	32.42	14	47.41	0.033333	12.91
0.25	17.26	14	43.73	19	53.76	0.05	15.06
0.5	21.30	19	51.50	23.25	62.98	0.083333	17.47
0.75	25.60	23.25	55.84	28	66.79	0.1	18.51
1.25	38.49	28	59.19	35.75	72.49	0.2	25.39
1.75	46.77	35.75	66.66	41	76.26	0.216667	27.42
2.25	55.31	41	71.87	49	82.76	0.4	40.25
2.75	61.46					0.6	52.08
3.5	70.55					1.0	72.06
			k _{obs} (er	ror), \mathbb{R}^2			
0.3264(85), 0.99		0.0281(0.0281(17), 0.99		0.0337(15), 0.99		63), 0.99
г		-	г1.	T	`		

Table S2 The variations of [PLA] in ROP process with Zr complexes in CDCl ₃ 1
mL, [CL] = 1.0 M in a sealed NMR tube at 100 °C

Fu]	Гh	h Bn	
Time(h)	Conv.(%)	Time(h)	Conv.(%)	Time(h)	Conv.(%
0	0	0	0	0	0
0.066667	12.35	2	21.54	6	30.91
0.116667	15.60	3	27.67	8	31.99
0.25	22.17	6	30.01	14	38.68
0.5	26.60	8	37.89	19	51.19
0.75	31.56	14	46.79	23.25	55.47
1.25	43.32	19	52.53	28	60.71
1.75	53.61	23.25	56.14	35.75	68.88
			5		

2.25	58.63	35.75	68.75	41	72.57				
2.75	63.22	41	73.77						
3.5	69.71	49	77.02						
		56	80.05						
k_{obs} (error), R^2									
0.3238(153), 0.99	0.0265(12), 0.99	0.0297	(15), 0.99				

Figure S2 First-order kinetic plots for LA polymerizations in CDCl₃ with time with different Zr complexes

Details of the Kinetic Study of *E*-CL and *L*-Lactide Polymerization

A typical kinetic study was conducted to establish the reaction order with respect to monomer and L^{OMe}Zr(OBn)₂. For CL polymerization, *e*-caprolactone (1.14 g, 2.0 M) was added to a solution of L^{OMe}Zr(OBn)₂ (0.20, 0.16, 0.12, 0.08 M) in CH₂Cl₂ (5 mL), respectively. The solution was then stirred at room temperature under nitrogen. At the indicated time intervals, 0.05 mL aliquots were removed, trapped with CDCl₃ (1 mL), and analyzed by ¹H NMR. The *ε*-caprolactone concentration [CL] was determined by integrating the triplet methylene peak of CL at 4.20 ppm and the triplet methylene peak of polylactone at 4.00 ppm. As expected, plots of ln([CL]₀/[CL]) vs. time for a wide range of [L^{OMe}Zr(OBn)₂] are linear, indicating the usual first order dependence on monomer concentration (Figure S3, Table S3). Thus, the rate expression can be written as $-d[CL]/dt = k_{app}[CL]^{1}[L^{OMe}Zr(OBn)_{2}]^{x} = k_{obs}[CL]^{1}$, where $k_{obs} = k_{app} [L^{OMe} Zr(OBn)_2]^x$. Plotting ln *k*obs vs ln[L^{OMe} Zr(OBn)_2] allows us to determine x, the order in $[L^{OMe}Zr(OBn)_2]$. From the slope of the fitted line as shown in Figure S4, the rate constant k is 0.0015 M⁻² s⁻¹. Therefore, on the basis of this analysis, x = 2. The reaction is first order in CL and second order in [L^{OMe}Zr(OBn)₂], and the overall rate equation is -d[CL]/dt = $k[CL]^{1}[L^{OMe}Zr(OBn)_{2}]^{2}$.

Figure S3 First-order kinetic plots for CL polymerizations with time in CH₂Cl₂ (5 mL) with different concentration of L^{OMe}Zr(OBn)₂.

100:4		10	0:6	100:8		100:10		
Time(h)	Conv.(%)	Time(h)	Conv.(%)	Time(h)	Conv.(%)	Time(h)	Conv.(%)	
0	0	0	0.00	0	0.00	0	0	
1.5	6.86	1.5	11.92	1.5	10.87	6	19.28	
10	13.62	10	21.29	10	27.95	24	43.04	
53	24.67	16.5	26.76	16.5	35.88	51	82.00	
116.5	41.29	39	42.93	39	58.22			
137.75	48.95	116.5	68.86	65.5	73.04			
		137.75	78.90	137.75	92.89			
k_{obs} (error), R^2								
0.0044(3), 0.99		0.0101(6), 0.99		0.0186(5), 0.99		0.0329(38), 0.98		

Table S3 The variations of $[PCL]^a$ in ROP process with a wide range of $L^{OMe}Zr(OBn)_2$ in CH_2Cl_2 5 mL, [CL] = 2.0 M at room temperature.

^a Obtained from ¹H NMR analysis.

Figure S4 Linear plot of $\ln k_{obs}$ vs $\ln [L^{OMe}Zr(OBn)_2]$ for the polymerization of CL with [CL] = 2.0 M in toluene (5 mL) at at room temperature.

For LA polymerization, *L*-lactide (0.18 g, 1.25 mmol, 1.25 M) was added to a solution of $L^{OMe}Zr(OBn)_2$ (0.025, 0.05, 0.075, 0.10 M) in CDCl₃ (1 mL), respectively. The solution was set in the NMR tube and sealed at 100°C. At the indicated time intervals, the tube was analyzed by ¹H NMR. The *L*-lactide concentration [LA] was determined by integrating the quartet methine peak of LA at 5.00 ppm and the quartet methine peak of polylactic acid at 5.20 ppm. As expected, plots of ln[LA]₀/ln[LA] vs. time for a wide range of [$L^{OMe}Zr(OBn)_2$] are linear, indicating the usual first order dependence on monomer concentration (Figure S5, Table S4). Thus, the rate expression can be written as $-d[LA]/dt = k_{app}[LA]^1[L^{OMe}Zr(OBn)_2]^x = k_{obs}[LA]^1$, where $k_{obs} = k_{app}[L^{OMe}Zr(OBn)_2]^x$. A plot of k_{obs} vs. $L^{OMe}Zr(OBn)_2$ (Figure S6) is linear, indicating the order of [$L^{OMe}Zr(OBn)_2$] (x = 1) and k_{app} which is 1.6636 M⁻¹min⁻¹.

Figure S5. First-order kinetic plots for LA polymerizations with time in CDCl_3 (1 mL) with different concentration of $L^{OMe}Zr(OBn)_2$.

Table S4 The variations of [PLA] ^a in ROI	process with a wide ran	nge of
$L^{OMe}Zr(OBn)_2$ in CDCl ₃ 1 mL, [LA] = 1.	25 M at 100 °C.	
	1	

5	50:1 50:2		0:2	50:3		50:4	
Time(h)	Conv.(%)	Time(h)	Conv.(%)	Time(h)	Conv.(%)	Time(h)	Conv.(%)
0	0	0	0	0	0	0	0
1.5	15.27	1.5	21.11	1.5	30.27	1.5	36.69
3	24.70	3	31.80	2.5	41.78	2.5	50.89
6	41.48	6	51.63	3.5	50.02	3.5	57.56
9	53.50	9	64.69	5	58.25	5	67.03
16	73.57			7	70.06	6.5	74.63
k (error) \mathbf{R}^2							

K_{obs} (error) K

0.11343(41), 0.99 0.16535(1013), 0.99 0.20321(1574), 0.99 0.08188(143), 0.99

^a Obtained from ¹H NMR analysis.

Figure S6. Linear plot of k_{obs} vs [L^{OMe}Zr(OBn)₂] for the polymerization of LA with [LA] = 1.25 M in CDCl₃ (1 mL) at 100 °C.

Figure S8. The $^{13}\mathrm{C}$ NMR spectrum of $L^{\mathrm{NMe2}}\!-H_2$

Figure S10. The $^{\rm 13}{\rm C}$ NMR spectrum of $L^{Py}\!\!-\!H_2$

Figure S12. The ¹³C NMR spectrum of L^{Bn}Zr(OBn)₂

Figure S14. The ¹³C NMR spectrum of L^{OMe}Zr(OBn)₂

Figure S16. The ¹³C NMR spectrum of L^FZr(OBn)₂

Figure S18. The ¹³C NMR spectrum of L^{NMe2}Zr(OBn)₂

Figure S20. The ¹³C NMR spectrum of L^{Py}Zr(OBn)₂

Figure S22. The ¹³C NMR spectrum of LThZr(OBn)₂

Figure S24. The ¹³C NMR spectrum of L^{Fu}Zr(OBn)₂