Supporting Information

Multiple target chemosensor: a fluorescent sensor for Zn(II) and Al(III) and chromogenic sensor for Fe(II) and Fe(III)

Yong Sung Kim, Gyeong Jin Park, Jae Jun Lee, Sun Young Lee, Seong Youl Lee, Cheal Kim*

Department of Fine Chemistry and Department of Interdisciplinary Bio IT Materials, Seoul National University of Science and Technology, Seoul 139-743, Korea. Fax: +82-2-973-9149; Tel: +82-2-970-6693; E-mail:chealkim@seoultech.ac.kr

Sample	Zn(II) added (µmol/L)	Zn(II) found (µmol/L)	Recovery (%)	R.S.D. (n = 3) (%)
Tap water	0.00	0.00	-	-
	110.00	113.11	102.8	0.8

Table S1. Determination of Zn(II) in Tap water

Conditions: $[1] = 10 \ \mu \text{mol/L}$ in DMF-buffer solution (95:5, v/v, 10 mM, bis-tris, pH 7.0).

Sample	Fe(III) added (µmol/L)	Fe(III) found (µmol/L)	Recovery (%)	R.S.D. (n = 3) (%)
Tap water	0.00	0.00	-	-
	15.00	14.58	97.2	3.1
Water sample ^[a]	0.00	0.00	-	-
	15.00	14.52	96.8	1.8

Table S2. Determination of Fe(III) in water samples

 $\begin{bmatrix} 17.00 & 14.02 & 70.0 & 11.0 \\ \hline 19.00 & 10.0 & 10.0 \\ \hline 19.00 & 10.00 & 10.00 & 10.00 \\ \hline 19.00 & 10.00 & 10.00 & 10.00 \\ \hline 19.00 & 10.00 & 10.00 & 10.00 & 10.00 \\ \hline 19.00 & 10.00 & 10.00 & 10.00 & 10.00 \\ \hline 19.00$

Figure S1. (a) UV-vis spectral changes of **1** (10 μ M) after addition of zinc ions (0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, and 1.9 equiv) in DMF. Inset: Plot of the UV-vis absorbance at 375 nm as a function of Zn²⁺ concentration. (b) UV-vis spectral changes of **1** (10 μ M) after addition of aluminium ions (0, 0.4, 0.8, 1.2, 1.6, 2.0, 2.4, 2.8, 3.2, 3.6, 4.0, 4.4 and 5.2 equiv) in DMF. Inset: Plot of the UV-vis absorbance at 400 nm as a function of Al³⁺ concentration.

Figure S2. (a) Benesi-Hildebrand equation plot (fluorescence intensity at 448 nm) of 1, assuming 1:1 stoichiometry for association between 1 and Zn^{2+} . (b) Benesi-Hildebrand equation plot (fluorescence intensity at 418 nm) of 1, assuming 1:1 stoichiometry for association between 1 and Al^{3+} .

Figure S3. (a) Detection limit of **1** (10 μ M) for Zn²⁺ through change of absorbance intensity (fluorescence intensity at 448 nm). (b) Detection limit of **1** (10 μ M) for Al³⁺ through change of absorbance intensity (fluorescence intensity at 418 nm).

Figure S4. Effect of competitive metal ions (10 μ M) on the interaction between **1** (110 μ M) and Al³⁺ ion (110 μ M) in DMF ($\lambda_{ex} = 355$ nm and $\lambda_{em} = 456$ nm).

Figure S5. ¹H NMR titration of **1** with Al³⁺ in DMF- d_7 : (a) only **1**; (b) **1**+Al³⁺ (0.6 equiv); (c) **1**+ Al³⁺ (1 equiv).

Figure S6. (a) Positive-ion electrospray ionization mass spectrum of **1** (100 μ M) upon addition of 1 equiv of Zn(NO₃)₂. (b) Positive-ion electrospray ionization mass spectrum of **1** (100 μ M) upon addition of 1 equiv of Al(NO₃)₃.

Figure S7. Benesi-Hildebrand equation plot (fluorescence intensity at 446 nm) of **1**, assuming 1:1 stoichiometry for association between **1** and Zn^{2+} .

Figure S8. Detection limit of 1 (10 μ M) for Zn²⁺ through change of fluorescence intensity (fluorescence intensity at 446 nm).

Figure S9. Effect of competitive metal ions (12 equiv) on the interaction between 1 (10 μ M) and Zn²⁺ ion (120 μ M) in DMF-buffer solution (95:5, v/v, 10 mM, bis-tris, pH 7.0) ($\lambda_{ex} = 355$ nm and $\lambda_{em} = 456$ nm).

Figure S10. Fluorescence spectra of sensor 1 in the presence of Zn^{2+} ion and EDTA in DMFbuffer solution (95:5, v/v, 10 mM, bis-tris, pH 7.0). $\lambda_{ex} = 355$ nm and $\lambda_{em} = 456$ nm.

Figure S11. Fluorescence intensity (at 446 nm) of **1** as a function of Zn(II) concentration. [**1**] = 10 μ M, [Zn(II)] = 0-120.00 μ M; Conditions: the sample was conducted in DMF-buffer solution (95:5, v/v, 10 mM, bis-tris, pH 7.0). λ_{ex} = 355 nm and λ_{em} = 456 nm.

Figure S12. (a) UV-vis titration of **1** (10 μ M) with Zn²⁺ (0-1.9 equiv) in MeOH-buffer solution (9:1, v/v, 10 mM, bis-tris, pH 7.0). (b) UV-vis titration of **1** (10 μ M) with Al³⁺ (0-1.2 equiv) in MeOH-buffer solution (9:1, v/v, 10 mM, bis-tris, pH 7.0).

Figure S13. (a) Job plot of **1** and Fe²⁺ in MeOH-buffer solution (9:1, v/v, 10 mM, bis-tris, pH 7.0). The total concentration of **1** and Fe²⁺ was 40 μ M (absorbance at 461 nm). (a) Job plot of **1** and Fe³⁺ in MeOH-buffer solution (9:1, v/v, 10 mM, bis-tris, pH 7.0). The total concentration of **1** and Fe³⁺ was 40 μ M (absorbance at 450 nm).

Figure S14. (a) Positive-ion electrospray ionization mass spectrum of 1 (100 μ M) upon addition of 1 equiv of Fe(NO₃)₃. (b) Positive-ion electrospray ionization mass spectrum of 1 (100 μ M) upon addition of 1 equiv of Fe(ClO₄)₂.

Figure S15. (a) Benesi-Hildebrand plot (absorbance at 457 nm) of **1**, assuming 1:1 stoichiometry for association between **1** and Fe^{2+} . (b) Benesi-Hildebrand plot (absorbance at 457 nm) of **1**, assuming 1:1 stoichiometry for association between **1** and Fe^{3+} .

Figure S16. (a) Detection limit of **1** (10 μ M) for Fe²⁺ through change of absorption intensity (absorbance at 457 nm). (b) Detection limit of **1** (10 μ M) for Fe³⁺ through change of absorption intensity (absorbance at 457 nm).

Figure S17. UV-vis spectra (at 457 nm) of **1** as a function of Fe(III) concentration. [**1**] = 10 μ M, [Fe(III)] = 0-15.00 μ M; Conditions: the sample was conducted in MeOH-buffer solution (9:1, v/v, 10 mM, bis-tris, pH 7.0).