Graphene Oxide-TiO₂ composite as a novel adsorbent for the preconcentration of heavy metals and rare earth elements in environmental samples followed by on-line inductively coupled plasma optical emission spectrometry detection

Yanan Zhang, Cheng Zhong, Qiangying Zhang, Beibei Chen, Man He*, Bin Hu

Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, China

Supplementary Information

Fig. S1. FT-IR spectra of GO (A), $TiO_2(B)$ and $GO-TiO_2(1:1)$ (C).

Fig. S2. TGA of GO (A) and GO-TiO₂(1:1) composite (B); DTG of GO (C) and GO-TiO₂(1:1) composite (D).

Fig. S3. XRD pattern of GO (A), TiO₂ (B) and GO-TiO₂ (1:1) composite (C).

Fig. S4. Effect of 1 mol L⁻¹ HNO₃ volume on the recovery of the analytes. pH: 5; The concentration of the metal ions: 0.5 μg mL⁻¹; Sample volume: 2.5 mL; Flow rate: 0.5 mL min⁻¹

Fig. S5. Effect of elution flow rate on recovery of the analytes. pH: 5; The concentration of the metal ions: 0.5 µg

mL⁻¹; Sample volume: 2.5 mL; Sample flow rate: 0.5 mL min⁻¹; Eluent concentration: 1 mol L⁻¹ HNO₃; Eluent volume: 0.7 mL

Fig. S6. Effect of sample volume on recovery of the analytes. pH: 5; The absolute concentration of each metal ion:

 $1.25~\mu g$; Sample flow rate: 2.0 mL min $^{-1}$

Fig. S7. Breakthrough curves of GO-TiO₂(1:1) of the analytes. (10 µg mL⁻¹ at a sample flow rate of 2.0 mL min⁻¹)

Table S1. Comparison of adsorption capacities (mg g⁻¹) with those reported in the literature

Table S2. Correlation coefficient values of the Pseudo-first-order and Pseudo-second-order

Table S3. Comparison of the method with those reported in the literature (on-line SPE-ICP-OES)

Fig. S1.

Fig. S2.

Fig. S3.

Fig. S4.

Fig. S5.

Fig. S6.

Fig. S7.

Materials	Cu	Pb	La	Ce	Eu	Dy	Yb	Ref.
nanometer-sized TiO ₂	_	_	7.0	_	8.3	8.8	9.8	13
modified mesoporous TiO_2	11.7	17.7	_	_	—	—	_	11
mesoporous TiO ₂	8.1		21.3	13.8	19.5	16.7	26.5	12
PAN-modified nano-TiO ₂	4.73	—	_	_	—	—	6.14	15
Graphene (dithizone)	_	16.6	_	_	—	—	_	21
MWNTs	—		8.30	—	9.43		8.57	19
MWCNT-PPy		25			—			20
TiO ₂ Nanotubes	_	—	12.3	10.1	13.2	—	14.7	37
oxidized SWNTs	5.4	6.2		—	—		—	18
GO@SiO ₂	6.0	13.6	_	_	—	—	_	33
GO-TiO ₂	8.2	64.2	28.7	25.1	16.6	19.3	24.1	This work

Table S1.

Tuble 52.										
	Pseu	do-first-	order	Pseudo	Pseudo-second-order					
Analyte	R_A^2	R_C^2	$R_{\rm E}^2$	R _B ²	R_D^2	R_F^2				
Cu	0.892	0.999	0.937	0.996	0.991	0.999				
Pb	0.802	0.988	0.839	0.907	0.860	0.994				
La	0.832	0.998	0.815	0.984	0.935	0.999				
Ce	0.785	1.000	0.761	0.994	0.968	0.999				
Eu	0.772	0.999	0.820	0.971	0.964	0.990				
Dy	0.831	0.997	0.856	0.981	0.977	0.997				
Yb	0.876	0.999	0.841	0.998	0.995	0.996				

Table S2.

Table	S3.
-------	-----

	Sample	Enrichment	LODs (ng mL ⁻¹)							
Materials	throughput (h-1)	factor	Cu	Pb	La	Ce	Eu	Dy	Yb	Ref.
nanometer-sized TiO ₂	_	50	_	_	0.36	_	0.12	0.28	0.10	13
nanometer-sized TiO ₂		50	0.34	_	_	_	_	_	_	14
modified mesoporous TiO_2	10	20	0.23	0.50	_	_	_	_	_	11
mesoporous TiO ₂	20	10	0.12	_	0.16	0.35	0.07	0.10	0.03	12
PAN-modified nano-TiO ₂	_	5	2.8	_	_	_	_	_	0.6	15
activated carbon	29	30	0.1	_	_	_	_	_	_	48
GO-TiO ₂	12	10	0.48	2.64	0.41	0.24	0.13	0.26	0.21	This work