Supplementary Information

Malachite green Adsorption onto Fe₃O₄@SiO₂-NH₂: Isotherms, Kinetic and Process Optimization

Ling Sun, Shuchao Hu, Hongmei Sun, Huiling Guo, Hongda Zhu, Mingxing Liu and Honghao Sun*

School of Food and pharmaceutical Engineering, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei

Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei University of Technology, Wuhan, 430068, China.

*Address correspondence to sunhonghao@mail.hbut.edu.cn.

Figure S1. TEM image of Fe_3O_4 (A), size distribution histogram of Fe_3O_4 (B), $Fe_3O_4@SiO_2$ (C), and $Fe_3O_4@SiO_2$ -NH2 (D).

Figure S2. The number distribution histogram of Fe_3O_4 nanoparticles at the core of the composite particles.

Figure S3. Dynamic light scattering measurements of Fe₃O₄, Fe₃O₄@SiO₂, Fe₃O₄@SiO₂-NH₂.

Figure S4. The UV–vis absorption of the malachite green (10mg/L) using the $Fe_3O_4@SiO_2-NH_2$ (a) and $Fe_3O_4@SiO_2$ (b).

Figure S5. The UV-vis absorption of the malachite green before (left) and after (right) adsorption by the $Fe_3O_4@SiO_2-NH_2$ (a) and $Fe_3O_4@SiO_2$ (b).

Figure S6. The Zeta-potential value of $Fe_3O_4@SiO_2-NH_2$ and $Fe_3O_4@SiO_2$ varying with pH.

Figure S7. The effect of CTAB, SDS and Tween-20 on the adsorption ability. The concentration of surfactant were 0.02M.

Figure S8. Adsorption by $Fe_3O_4@SiO_2-NH_2$ of (a) methylene blue and (b) crystal violet dissolved in Yangtze River water. The concentration of $Fe_3O_4@SiO_2-NH_2$ was 100mg/L and the initial concentration of dye solution was 10 mg/L.

Figure S9. Magnetic separation behavior of (a) at 0 hours, (b) after 30mins, (c) after 12 hours. (1) MG, (2) $Fe_3O_4@SiO_2$, (3) $Fe_3O_4@SiO_2$ -NH₂.

Figure S10. Magnetic separation behavior of (a) at 0mins, (b) after 30mins. From 1-9 is the concentration of $Fe_3O_4@SiO_2-NH_2$ (0mg/L, 12mg/L, 18mg/L, 25mg/L, 26mg/L, 31mg/L, 45mg/L, 100mg/L, 150mg/L)