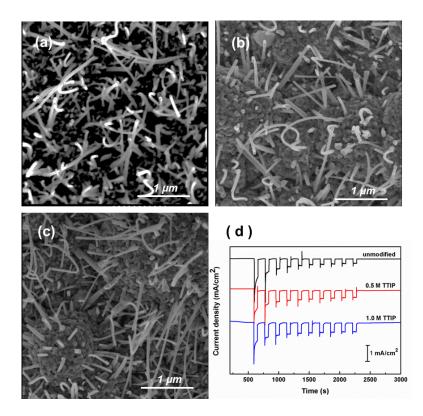
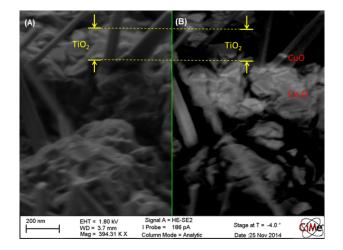
## **Electronic Supplementary Information**


Introducing a protective interlayer of TiO<sub>2</sub> in Cu<sub>2</sub>O-CuO heterojunction thin film as a highly stable visible photocathode

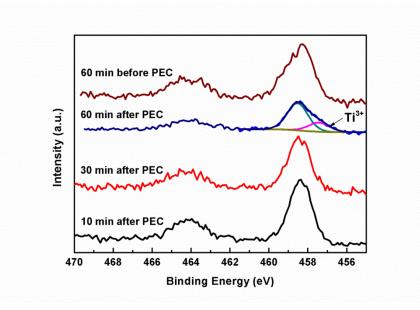
Peng Wang<sup>a</sup>, Xiaoming Wen<sup>b</sup>, Rose Amal<sup>\*a</sup> and Yun Hau Ng<sup>\*a</sup>


<sup>a</sup>Particles and Catalysis Research Group, School of Chemical Engineering, The University of New South Wales, Sydney NSW 2052, Australia.

<sup>b</sup>School of Photovoltaics and Renewable Energy Engineering, The University of New South Wales, Sydney NSW 2052, Australia.

Corresponding author: Y. H. Ng (yh.ng@unsw.edu.au), R. Amal (r.amal@unsw.edu.au)




ESI Fig. S1 SEM images of (a) unmodified Cu<sub>2</sub>O-CuO photoelectrodes; (b) TiO<sub>2</sub>-modified Cu<sub>2</sub>O-CuO photoelectrodes with 0.5 M TiO<sub>2</sub> precursor and (c) 1.0 M TiO<sub>2</sub> precursor; (d) corresponding visible light (>420 nm) photocurrent generation.



ESI Fig. S2 Scanning electron and back scattered electron images of  $Cu_2O$ -CuO thin film coated with TiO<sub>2</sub> for 30 mins.

The thickness of TiO<sub>2</sub> layer (30 min treatment) was estimated using a 45° tilted back scattered electrons (BSE) imaging obtained on a Zeiss MERLIN microscope. **Figure A** shows the morphology of the film surface consists of TiO<sub>2</sub>, Cu<sub>2</sub>O and CuO nanowire components. The TiO<sub>2</sub> component can be distinguished in the right image (**Figure B**) which was formed from the back scattered electrons. It shows the presence of Cu element in brighter colour and Ti element in dark colour. The thickness of the TiO<sub>2</sub> was therefore estimated to be ca. 140 nm.

Note that the thickness of TiO<sub>2</sub> across the thin film's surface may not be evenly distributed due to the nature of the dip-coating method. In this work, indeed, we did not consider the TiO<sub>2</sub> thickness (as we understood it would be much thinner compare with the bulk Cu<sub>2</sub>O layer (ca. 20  $\mu$ m)) as critical as the TiO<sub>2</sub> coverage on the surface. The level of TiO<sub>2</sub> coverage indicated in the **Figure 3** in the original manuscript was found important in determining its protective effectiveness against the redox reactions at the Cu<sub>2</sub>O-electrolyte interface.



ESI Fig. S3 Ti 2p spectra of Cu<sub>2</sub>O-CuO photoelectrodes modified with precursor of  $TiO_2$  at different duration (10 min, 30 min and 60 min).