Supporting Information for:

Oxidation- and thermo-responsive poly(N-isopropylacrylamide-co-2hydroxyethyl acrylate) hydrogels cross-linked via diselenides for controlled drug delivery

Xinfeng Cheng^{a,b}, Yong Jin^{*c,d}, Tongbing Sun^{a,b}, Rui Qi^{a,b}, Baozhu Fan^{a,b},

Hanping Li^{c,d}

^aChengdu Institute of Organic Chemistry, Chinese Academy of Science, Center of Polymer Science and Technology, Chengdu 610041, People's Republic of China
^bUniversity of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, People's Republic of China

^cNational Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, People's Republic of China. E-mail: jinyong@cioc.ac. cn; Tel: +86-28-85214963

^dKey Laboratory of Leather Chemistry and Engineering (Sichuan University), Ministry of Education, Chengdu 610065, People's Republic of China

Table S1

Samples	Feed compositions / mmol			Theoretical	NIPAM content	Yield (%)
	NIPA	HEA	AIBN	NIPAM content	in the copolymer	
	М			(mol%)	(mol%) ^a	
PNH9/1	45	5.00	3.40	90	93	93
PNH	45	11.25	3.40	80	84	93
PNH5/5	45	45.00	3.40	50	62	95

^a calculated from ¹H NMR analysis results.

Table S1. Feed and result compositions of poly(NIPAM-co-HEA) copolymers.

Fig. S1

Fig. S1. ¹H NMR spectra of PNH9/1, PNH and PNH5/5 in CDCl₃.

Fig. S2

Fig. S2. FT-IR spectra of PNH9/1, PNH and PNH5/5.

Table S2

Sample	Compositions (g)		Gelation time $(h)^a$	Yield
	PNH	IPDI-SeSe-IPDI		(%)
PNH-SeSe1	3.28	0.20	No gelation	_
PNH-SeSe2/Gel 1	3.28	0.60	6	86
PNH-SeSe3/Gel 2	3.28	1.80	3	95

^aThe gelation time was determined at the time point when the mixture solution became an immobile gel in the inverted cuvette at room temperature.

Table S2. Compositions, gelation time and yields of the mixing solution containingPNH and IPDI-SeSe-IPDI.

Fig. S3. GPC trace of copolymer PNH and the crosslinking agent IPDI-SeSe-IPDI.

Fig. S4.

Fig. S4. ¹³C NMR spectrum of the crosslinker IPDI-SeSe-IPDI in CDCl₃.

Fig. S5.

Fig. S5. Time-dependent sol-gel transition of mixing solution containing PNH copolymers (3.28 g) and IPDI-SeSe-IPDI crosslinkers varying from 0.20 g (a and a'), 0.60 g (b and b') and 1.80 g (c and c').

Fig. S6.

Fig. S6. Turbidity measurements of PNIPAM homopolymer and PNH copolymer.

Fig. S7.

Fig. S7. Dynamic swelling behavior of the PNH-SeSe hydrogels with different crosslinker content (Gel 1, 15% wt; Gel 2, 35% wt) in distilled water at 25 °C.

Fig. S8.

Fig. S8. Thermo-sensitive swelling ratios of the PNH-SeSe hydrogels with different crosslinker content (wt%): Gel 1 (15% wt); Gel 2 (35% wt).

Fig. S9.

Fig. S9. XPS analysis of the model compound $HOCH_2CH_2SeSeCH_2CH_2OH$ before and after oxidation in 0.5% wt H_2O_2 solution.

Fig. S10.

Fig. S10. Calibration curve of the salicyclic acid in distilled water.