Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2015

Figure S1. ¹H NMR spectrum of cis-polybutadiene rubber (cis-BR) used in the present study using Bruker at 600 MHz, and deuterated chloroform (CDCl₃) as a solvent.

Figure S2. Inverse gated decoupling ¹³C NMR spectrum of cis-polybutadiene rubber (cis-BR) used in the present study using Bruker at 150 MHz, and deuterated chloroform (CDCl₃) as a solvent. Inverse gated decoupling ¹³C NMR is suitable for quantitative analysis due to the suppression of NOE.

¹ H NMR		
4.98	1, 2-structure (d)	
5.38	<i>cis</i> -1, 4 + <i>trans</i> -1, 4 (a + b)	
5.58	1, 2-structure (c)	
	¹³ C NMR	
Shift (ppm)	Assignments	
27.41	<i>cis</i> -1, 4 (k)	
32.69	<i>trans</i> -1, 4 (l)	

Table. S1 Assignments of the shift for *cis*-1, 4, *trans*-1, 4, and 1, 2-structure in ¹H NMR spectrum and inverse gated decoupling ¹³C NMR spectrum.

The total molar content of 1, 2-structure and 1, 4-structure of cis-BR can be easily calculated using ¹H NMR spectrum. The relative molar content of *cis*-1, 4 and *trans*-1, 4-structure is calculated using inverse gated decoupling ¹³C NMR spectrum.

For ¹H NMR spectrum:

$$C_{1,2-\text{structure}} = \frac{A_d/2}{\frac{A_{a+b} + A_c - A_d/2}{2} + A_d/2} \times 100\%$$

$$C_{1,4-\text{structure}} = 100 - C_{1,2-\text{structure}}$$

where A represents the integrated area.

For ¹³C NMR spectrum, the relative molar content of *cis*-1, 4 and *trans*-1, 4-structure are below:

$$R_{\text{cis-1},4} = \frac{A_k/2}{A_k/2 + A_l/2} \times 100\%$$

$$R_{\text{trans-1, 4}} = 100 - R_{cis-1,4}$$

So, the total molar content of *cis*-1, 4 and *trans*-1, 4-structure can be calculated:

$$C_{\text{cis-1},4} = R_{\text{cis-1},4} \times C_{1,4-\text{structure}}$$

 $C_{\text{trans-1, 4}} = R_{\text{trans-1, 4}} \times C_{1,4-\text{structure}}$

In this study, the content of *cis*-1, 4, trans-1, 4, and 1, 2-structure are calculated as 94.5%, 2.3%, and 3.2%, respectively.

Figure S3. Temperature-dependent FTIR spectra of the cross-linking process of cis-BR from 50 $^{\circ}$ C to 220 $^{\circ}$ C in the region 3750–2750 cm⁻¹.