Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2015

Supporting Information

A New soft dielectric silicone elastomer matrix with high mechanical integrity and low losses

F. B. Madsen, L. Yu, A. E. Daugaard, S. Hvilsted and A. L. Skov*,

Danish Polymer Center, Department of Chemical and Biochemical Engineering, Technical University of Denmark, Building 227, 2800 Kgs. Lyngby, Denmark

Materials:

Hydride-terminated PDMS, DMS-H11 ($\bar{M}_{w\approx}$ 1200 g mol⁻¹ as determined by ¹H-NMR), 3-(chloropropyl)methyldimethoxysilane and allyldimethylsilane were acquired from Gelest Inc. Hydride-terminated PDMS ($\bar{M}_{w\approx}$ 580 g mol⁻¹ as stated by supplier) was purchased from Sigma-Aldrich. All other chemicals were acquired from Sigma-Aldrich and used as received, unless otherwise stated.

Syntheses:

All reactions were carried out in a nitrogen atmosphere.

 α , ω -Allyl-poly((chloropropyl)methylsiloxane-co-dimethylsiloxane) with a 1200 g mol⁻¹ pre-polymer Co-1:

Co-1 was synthesised according to a recently published procedure[23] using 3-chloropropylmethyldimethoxysilane (7.23 g, 39.6 mmol), hydride-terminated dimethylsiloxane (1200 g mol⁻¹) (50 g, 41.7 mmol), tris(pentafluorophenyl)borane (2 mL, 0.04 M, 0.2 mol%), dimethoxydimethylsilane (19.4 g, 163 mmol) and allyldimethylsilane (9.76 g, 97.4 mmol) to produce a slightly yellowish oil (50.0 g, 96.6 %). IR (cm⁻¹): 2960 (C-

H stretch); 2095 (-N₃ stretch); 1630 (C=C stretch); 1410 (Si-CH₂ stretch); 1260 (Si-CH₃ stretch); 1010 (Si-O stretch). ¹H NMR (CDCl₃, $\delta_{\rm H}$, ppm): -0.05-0.09 (m, CH_3 -Si), 0.58 (m, -Si-CH₂-CH₂-), 1.50 (d, 4H, ³*J*=8.1 Hz, CH₂-CH=CH₂), 1.65 (m, -CH₂-CH₂-CH₂-), 3.23 (t, ³*J*=7.1 Hz, N₃-CH₂-CH₂), 4.83 (m, 4H, CH=CH₂), 5.77 (m, 2H, CH=CH₂). ¹³C-NMR (CDCl₃, $\delta_{\rm C}$, ppm): -0.55-1.03 (d+e+i), 14.50 (f), 22.77 (g), 23.40 (c), 54.14 (h), 112.51 (a), 135.32 (b). SEC (toluene): $M_W = 29,000$ g mol⁻¹.

 α , ω -Allyl-poly((chloropropyl)methylsiloxane-co-dimethylsiloxane) with a 580 g mol⁻¹ pre-polymer Co-2:

$$\underset{a \text{ } }{ \underset{c}{ \bigvee}} \overset{h}{\underset{f}{ \bigvee}} \overset{Cl}{\underset{g}{ \bigvee}} \overset{Cl}{\underset{f}{ \bigvee}} \overset{Cl}{\underset{g}{ \bigvee}} \overset{Cl}{$$

Co-2 was synthesised according to a recently published procedure[23] using 3-chloropropylmethyldimethoxysilane (15 g, 82.1 mmol), hydride-terminated dimethylsiloxane (580 g mol⁻¹) (47.1 g, 81.3 mmol), tris(pentafluorophenyl)borane (4.2 mL, 0.04 M, 0.2 mol%), dimethoxydimethylsilane (39.6 g, 329.4 mmol), allyldimethylsilane (10.0 g, 100 mmol) and to produce a slightly yellowish oil (55.4 g, 92.8 %). IR (cm⁻¹): 2960 (C-H stretch); 2095 (-N₃ stretch); 1630 (C=C stretch); 1410 (Si-CH₂ stretch); 1260 (Si-CH₃ stretch); 1010 (Si-O stretch). ¹H NMR (CDCl₃, δ_H, ppm): -0.05-0.09 (m, CH₃-Si), 0.56 (m, -Si-CH₂-CH₂-), 1.50 (d, 4H, 3 *J*=8.4 Hz, CH₂-CH=CH₂), 1.65 (m, -CH₂-CH₂-CH₂-), 3.23 (t, 3 *J*=7.2 Hz, N₃-CH₂-CH₂), 4.83 (m, 4H, CH=CH₂), 5.77 (m, 2H, CH=CH₂). ¹³C-NMR (CDCl₃, δ_C, ppm): -0.55-1.03 (d+e+i), 14.51 (f), 22.79 (g), 23.40 (c), 54.14 (h), 112.56 (a), 135.27 (b). SEC (toluene): $^{\overline{M}}$ *w* = 29,000 g mol⁻¹.

Compositions for elastomer synthesis:

Table S1: Compositions of the prepared samples.

		Quantities			
Entry	Composition	Co-1	Co-2	DMS-V31	Cross- linker
DMS-V31	Reference sample with DMS-V31	-	-	4.00 g/0.014 mmol	0.14g/0.007 mmol
Co-1_50	50 mol% DMS-V31 + 50 mol% Co-1	2.00 g/0.007 mmol	-	1.93 g/0.007 mmol	0.13g/0.007 mmol
Co-1	Pure Co-1	4.00 g/0.014 mmol	-	-	0.13g/0.007 mmol
Co-2_25	75 mol% DMS-V31 + 25 mol% Co-2	-	1.00 g/0.038 mmol	2.90 g/0.010 mmol	0.13g/0.007 mmol
Co-2_50	50 mol% DMS-V31 + 50 mol% Co-2	-	2g/0.007 mmol	1.93 g/0.007 mmol	0.13g/0.007 mmol
Со-2	Pure Co-2	-	4.00 g/0.014 mmol	-	0.13g/0.007 mmol

Thermal gravimetric analysis (TGA):

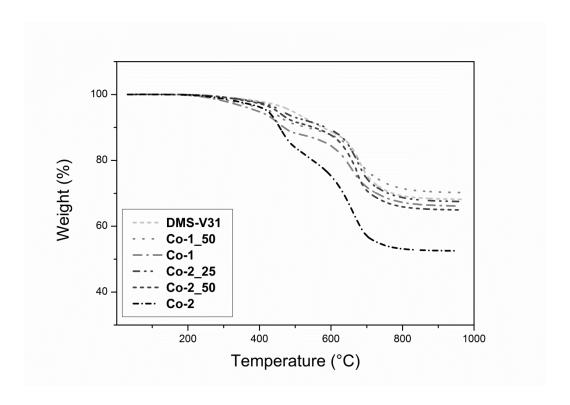


Figure S2: TGA measurements of the prepared elastomer films.