Deep eutectic solvent based on choline chloride and malonic acid as an efficient and reusable catalytic system for one-pot synthesis of functionalized pyrroles

Hai-Chuan Hu ${ }^{\text {a }}$, Yu-Heng Liu ${ }^{\text {b }}$, Bao-Le Lia ${ }^{\text {a }}$, Zhen-Shui Cui ${ }^{\text {a }}$ and Zhan-Hui Zhang*,a
${ }^{a}$ College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang 050024, PR China
${ }^{b}$ The College of Preclinical Medicine, Hebei Medical University,Shijiazhuang 050017, China

Table of Contents

Characterization data of intermediate \mathbf{A} and \mathbf{B} S2-S3
Crystallographic data for compound 5c S4
Copies of NMR spectra for product 5a-5aa, intermediate A and B S5-S33

(Z)-4-(Phenylamino)pent-3-en-2-one (intermediate A)

A mixture of acetylacetone (1 mmol), aniline (1 mmol) in $\mathrm{ChCl}-$ malonic acid $(0.5 \mathrm{~g})$ was stirred at $80^{\circ} \mathrm{C}$ (monitored by TLC). Upon completion of the reaction, the reaction mixture was cooled to room temperature and water (5 mL) was added. The $\mathrm{ChCl}-$ malonic acid was dissolved in water and the products were extracted with EtOAc $(3 \times 5 \mathrm{~mL})$. The combined organic layers were dried over MgSO_{4}, concentrated, and the resulting product was purified by column chromatography on SiO_{2} with EtOAc -cyclohexane (2:8) to afford pure (Z)-4-(phenylamino)pent-3-en-2-one.

Yellow sticky liquid; IR (KBr): 3032, 2928, 2850, 1615, 1556, 1518, 1442, 1270, 1028 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 1.98(\mathrm{~s}, 3 \mathrm{H}), 2.09(\mathrm{~s}, 3 \mathrm{H}), 5.18(\mathrm{~s}, 1 \mathrm{H}), 7.10(\mathrm{~d}, J=7.5$ $\mathrm{Hz}, 2 \mathrm{H}), 7.18(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 12.46(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 19.8,29.1,97.6,124.7,125.5,129.0,138.7,160.2,196.1 \mathrm{ppm}$; Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{NO}: \mathrm{C}, 75.40$; H, 7.48; N, 7.99; Found: C, 75.24; H, 7.38; N, 7.88; ESI-MS: $\mathrm{m} / \mathrm{z}=176(\mathrm{M}+1)^{+}$.

(\boldsymbol{E})-1-Chloro-4-(2-nitrovinyl)benzene (intermediate B)

4-Chlorobenzaldehyde (6.2 mmol) was heated with ammonium acetate ($1.2 \mathrm{~g}, 15.6 \mathrm{mmol}$) in a mixture of nitromethane $(0.85 \mathrm{ml}, 15.7 \mathrm{mmol})$ and glacial acetic acid $(5.2 \mathrm{ml})$ at $100{ }^{\circ} \mathrm{C}$. Upon completion of the reaction, the solvent was removed under reduced pressure leaving a brown residue which was extracted by addition of water (30 ml) and dichloromethane (2×30 ml). The combined organic layers were dried over MgSO_{4}, concentrated, and pure products were obtained by column chromatography on silica gel using ethyl acetate/hexane as the eluent.

Yellow solid, mp 111-112 ${ }^{\circ} \mathrm{C}$; IR (KBr): 3030, 1638, 1518, 1340, $1259 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 7.43(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.49(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.55(\mathrm{~d}, J=13.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.96(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 128.5,129.7,130.3,137.4$,
137.7, 138.3 ppm; Calcd for $\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{ClNO}_{2}$: C, 52.34 ; H, 3.29; N, 7.63; Found: C, 52.26; H, 3.20; N, 7.49; ESI-MS: m/z=184 (M+1) ${ }^{+}$.

Crystallographic data

The product 5 c was crystallized by slow evaporation from ethyl acetate and hexane. The data were collected at room temperature with a Bruker Smart Apex CCD diffractometer with Mo Ka monochromated radiation $(\mathrm{k}=0.71703 \AA$). Routine Lorentz and polarization corrections were applied. The structure was solved by direct methods and refined by the fullmatrix least-squares methods on F2 using the SHELXTL crystallographic software package.

Crystal data for $\mathbf{5 c}$:

Empirical formula	C 23 H 25 NO
Formula weight	331.44
Wavelength	0.71073 A
Crystal system,	Monoclinic
Space group	$\mathrm{P} 2(1) / \mathrm{c}$
a (\AA)	$10.7809(8)$
$\mathrm{b}(\AA)$	$16.0045(12)$
$\mathrm{c}(\AA)$	$11.2190(8)$
$\alpha\left({ }^{\circ}\right)$	90
$\beta\left({ }^{\circ}\right)$	$92.3110(10)$
$\gamma\left({ }^{\circ}\right)$	90
Volume $\left(\AA^{3}\right)$	$1934.2(2) \mathrm{A}^{\wedge} 3$
Z	4
Absorption coefficient $\left(\mathrm{mm}^{-1}\right)$	0.069
$\mathrm{~F}(000)$	712
Reflections collected	$9650[\mathrm{R}(\mathrm{int})=0.0258]$
Completeness to theta $=25.02$	99.9%
Gof	1.023
Final R indices [I>2sigma(I)]	$\mathrm{R}_{1}=0.0523, \mathrm{wR}_{2}=0.1430$
R indices (all data)	$\mathrm{R}_{1}=0.0598, \mathrm{wR}_{2}=0.1506$
Extinction coefficient	$0.043(4)$

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{5 a}$

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{5 b}$

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{5 c}$

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{5 d}$

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{5 e}$

1H NMR and 13C NMR of compound $\mathbf{5 f}$

ppm (t1)

1H NMR and 13C NMR of compound $\mathbf{5 g}$

1H NMR and 13C NMR of compound $\mathbf{5 h}$

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{5 i}$

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{5 j}$

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{5 k}$

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{5 l}$

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{5 m}$

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{5 n}$

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{5 o}$

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{5 p}$

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{5 q}$

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{5 r}$

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{5 s}$

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{5 t}$

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{5 u}$

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{5 v}$

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{5 w}$

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{5 x}$

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{5 y}$

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{5 z}$

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of compound 5aa

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of compound intermediate A

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of compound intermediate B

