Deep eutectic solvent based on choline chloride and malonic acid as an efficient and reusable catalytic system for one-pot synthesis of functionalized pyrroles

Hai-Chuan Hu^a, Yu-Heng Liu^b, Bao-Le Li^a, Zhen-Shui Cui^a and Zhan-Hui Zhang*,^a

^aCollege of Chemistry and Material Science, Hebei Normal University, Shijiazhuang 050024, PR China ^bThe College of Preclinical Medicine, Hebei Medical University, Shijiazhuang 050017, China

Table of Contents

Characterization data of intermediate A and B	S2-S3
Crystallographic data for compound 5c	S4
Copies of NMR spectra for product 5a-5aa, intermediate A and B	S5-S33

(Z)-4-(Phenylamino)pent-3-en-2-one (intermediate A)

A mixture of acetylacetone (1 mmol), aniline (1 mmol) in ChCl-malonic acid (0.5 g) was stirred at 80 °C (monitored by TLC). Upon completion of the reaction, the reaction mixture was cooled to room temperature and water (5 mL) was added. The ChCl-malonic acid was dissolved in water and the products were extracted with EtOAc (3×5 mL). The combined organic layers were dried over MgSO₄, concentrated, and the resulting product was purified by column chromatography on SiO₂ with EtOAc-cyclohexane (2:8) to afford pure (Z)-4-(phenylamino)pent-3-en-2-one.

Yellow sticky liquid; IR (KBr): 3032, 2928, 2850, 1615, 1556, 1518, 1442, 1270, 1028 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 1.98 (s, 3H), 2.09 (s, 3H), 5.18 (s, 1H), 7.10 (d, *J* = 7.5 Hz, 2H), 7.18 (t, *J* = 7.5 Hz, 1H), 7.35 (t, *J* = 8.0 Hz, 2H), 12.46 (s, 1H) ppm; ¹³C NMR (CDCl₃, 125MHz) δ 19.8, 29.1, 97.6, 124.7, 125.5, 129.0, 138.7, 160.2, 196.1 ppm; Anal. Calcd for C₁₁H₁₃NO: C, 75.40; H, 7.48; N, 7.99; Found: C, 75.24; H, 7.38; N, 7.88; ESI-MS: m/z =176 (M+1)⁺.

(E)-1-Chloro-4-(2-nitrovinyl)benzene (intermediate B)

4-Chlorobenzaldehyde (6.2 mmol) was heated with ammonium acetate (1.2 g, 15.6 mmol) in a mixture of nitromethane (0.85 ml, 15.7 mmol) and glacial acetic acid (5.2 ml) at 100 °C. Upon completion of the reaction, the solvent was removed under reduced pressure leaving a brown residue which was extracted by addition of water (30 ml) and dichloromethane (2×30 ml). The combined organic layers were dried over MgSO₄, concentrated, and pure products were obtained by column chromatography on silica gel using ethyl acetate/hexane as the eluent.

Yellow solid, mp 111-112 °C; IR (KBr): 3030, 1638, 1518, 1340, 1259 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 7.43 (d, *J* = 8.5 Hz, 2H), 7.49 (d, *J* = 8.5 Hz, 2H), 7.55 (d, *J* = 13.5 Hz, 1H), 7.96 (d, *J* = 13.5 Hz, 1H) ppm; ¹³C NMR (CDCl₃, 125MHz) δ 128.5, 129.7, 130.3, 137.4,

137.7, 138.3 ppm; Calcd for C₈H₆ClNO₂: C, 52.34; H, 3.29; N, 7.63; Found: C, 52.26; H, 3.20; N, 7.49; ESI-MS: m/z =184 (M+1)⁺.

Crystallographic data

The product **5c** was crystallized by slow evaporation from ethyl acetate and hexane. The data were collected at room temperature with a Bruker Smart Apex CCD diffractometer with Mo Ka monochromated radiation (k = 0.71703 Å). Routine Lorentz and polarization corrections were applied. The structure was solved by direct methods and refined by the full-matrix least-squares methods on F2 using the SHELXTL crystallographic software package.

Empirical formula	C23H25NO
Formula weight	331.44
Wavelength	0.71073 A
Crystal system,	Monoclinic
Space group	P2(1)/c
a (Å)	10.7809(8)
b (Å)	16.0045(12)
c (Å)	11.2190(8)
α (°)	90
β (°)	92.3110(10)
γ (°)	90
Volume (Å ³)	1934.2(2) A^3
Z	4
Absorption coefficient (mm ⁻¹)	0.069
F(000)	712
Reflections collected	9650 [R(int) = 0.0258]
Completeness to theta $= 25.02$	99.9 %
Gof	1.023
Final R indices [I>2sigma(I)]	$R_1 = 0.0523, wR_2 = 0.1430$
R indices (all data)	$R_1 = 0.0598, wR_2 = 0.1506$
Extinction coefficient	0.043(4)

Crystal data for 5c:

¹H NMR and ¹³C NMR of compound **5a**

 $^1\mathrm{H}$ NMR and $^{13}\mathrm{C}$ NMR of compound $\mathbf{5b}$

 $^1\mathrm{H}$ NMR and $^{13}\mathrm{C}$ NMR of compound $\mathbf{5c}$

 $^1\mathrm{H}$ NMR and $^{13}\mathrm{C}$ NMR of compound $\mathbf{5d}$

1H NMR and 13C NMR of compound 5f

1H NMR and 13C NMR of compound 5g

1H NMR and 13C NMR of compound 5h

¹H NMR and ¹³C NMR of compound **5**i

¹H NMR and ¹³C NMR of compound **5**j

7.384 7.360 7.346 7.331 7.331 7.306 7.306 7.292 7.280 6.539 6.345 6.345 6.336 6.336 6.336 6.259 6.253 4.985 2.544 2.006 5000(40000 3000(2000(1000(₩¥ +?200 ₽ 1.03 ₽ 0.99 **-** 2.04 ₹ 3.03 ł 7.0 5.(6.(4.(3.0 ppm (t1) 149.291 142.829 136.097 134.686 129.189 129.189 128.050 126.529 126.529 126.529 126.529 126.529 126.529 126.451 119.379 110.401 110.401 197.468 30,903 11.258 43.105 10000 - 50000 200 ppm (t1) 10(15C | 5(

 $^1\mathrm{H}$ NMR and $^{13}\mathrm{C}$ NMR of compound $\mathbf{5k}$

 $^1\mathrm{H}$ NMR and $^{13}\mathrm{C}$ NMR of compound $\mathbf{5l}$

 $^1\mathrm{H}$ NMR and $^{13}\mathrm{C}$ NMR of compound $\mathbf{5m}$

 $^1\mathrm{H}$ NMR and $^{13}\mathrm{C}$ NMR of compound $\mathbf{5n}$

2.097 2.399 - 6000C — 5000C 40000 - 30000 - 20000 - 10000 - 0 무무 두 6.03 2.00 부 1.00 구 3.01 ¥ 3.00 5.0 3.0 6.0 4.0 7.0 ppm (t1) 138.613 135.545 134.549 132.784 130.533 132.784 130.533 130.533 129.441 128.488 128.285 126.256 126.256 125.024 122.501 122.50 197.169 12.961 31.193 - 10000 - 50000 - 0 100 50 200 ppm (t1) | 150

¹H NMR and ¹³C NMR of compound **50**

¹H NMR and ¹³C NMR of compound **5p**

 $^1\mathrm{H}$ NMR and $^{13}\mathrm{C}$ NMR of compound $\mathbf{5q}$

 $^1\mathrm{H}$ NMR and $^{13}\mathrm{C}$ NMR of compound $\mathbf{5r}$

¹H NMR and ¹³C NMR of compound **5s**

 $^1\mathrm{H}$ NMR and $^{13}\mathrm{C}$ NMR of compound $\mathbf{5u}$

 $^1\mathrm{H}$ NMR and $^{13}\mathrm{C}$ NMR of compound 5v

 $^1\mathrm{H}$ NMR and $^{13}\mathrm{C}$ NMR of compound $\mathbf{5w}$

 $^1\mathrm{H}$ NMR and $^{13}\mathrm{C}$ NMR of compound 5x

 $^1\mathrm{H}$ NMR and $^{13}\mathrm{C}$ NMR of compound $\mathbf{5z}$

¹H NMR and ¹³C NMR of compound **5aa**

¹H NMR and ¹³C NMR of compound intermediate A

