Supplementary Information

Picolinic acid based acyclic bifunctional chelating agent and its methionine conjugate as potential SPECT imaging agents: Syntheses and preclinical evaluation

K Ganesh Kadiyala,^{a,b} Tulika Tyagi,^a Dipti Kakkar,^a Nidhi Chadha,^{a,b} Krishna Chuttani,^a Bal Gangadhar Roy,^a Meganathan Thirumal,^b Anil K. Mishra,^{*a} Anupama Datta.^{*a}

^{*a*} Division of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organization, Brig S. K. Mazumdar Marg, Delhi-110054, India.

^b Department of Chemistry, University of Delhi, Delhi-110007, India.

^{*} To whom correspondence should be addressed. Tel: +91-11-23905123, 23905117

e-mail: anupama@inmas.drdo.in_or akmishra63@gmail.com

Contents

1)	Figure S1. ¹ H NMR spectrum of diethyl pyridine-2,6-di carboxylate (2)	4
2)	Figure S2. ¹³ C NMR spectrum of diethyl pyridine-2,6-di carboxylate (2)	5
3)	Figure S3. Mass spectrum of diethyl pyridine-2,6-di carboxylate (2)	6
4)	Figure S4. ¹ H NMR Spectrum of ethyl 6-(hydroxylmethyl)picolinate (3)	7
5)	Figure S5. ¹³ C NMR Spectrum of Ethyl 6-(hydroxylmethyl)picolinate (3)	8
6)	Figure S6. Mass spectrum ethyl 6-(hydroxylmethyl)picolinate (3)	9
7)	Figure S7. ¹ H NMR Spectrum of ethyl 6-(chloromethyl)picolinate(4)	10
8)	Figure S8. ¹³ C NMR Spectrum of ethyl 6-(chloromethyl)picolinate (4)	11
9)	Figure S9. Mass spectrum of ethyl 6-(chloromethyl)picolinate (4)	12
10)	Figure S10. ¹ H NMR Spectrum of <i>tert</i> -butyl 2-aminoethylcarbamate (6)	13
11)	Figure S11. ¹³ C NMR Spectrum of <i>tert</i> -butyl 2-aminoethylcarbamate (6)	14
12)	Figure S12. Mass spectrum <i>tert</i> -butyl 2-aminoethylcarbamate (6)	15
13)	Figure S13. ¹ H NMR spectrum of	
	diethyl 6,6'-(2(tert-butoxycarbonylamino)ethylazanediyl)bis(methylene)dipicolinate (7)	16
14)	Figure S14. ¹³ C NMR spectrum of	
	diethyl 6,6'-(2(tert-butoxycarbonylamino)ethylazanediyl)bis(methylene)dipicolinate (7)	17
15)	Figure S15. Mass spectrum of	
	diethyl 6,6'-(2(tert-butoxycarbonylamino)ethylazanediyl)bis(methylene)dipicolinate (7)	18
16)	Figure S16. ¹ H NMR spectrum of	
	diethyl 6,6'-(2-aminoethylazanediyl)bis(methylene)dipicolinate (8)	19
17)	Figure S17. ¹³ C NMR spectrum of	
	diethyl 6,6'-(2-aminoethylazanediyl)bis(methylene)dipicolinate (8)	20
18)	Figure S18. Mass spectrum of	
	diethyl 6,6'-(2-aminoethylazanediyl)bis(methylene)dipicolinate (8)	21
19)	Figure S19. ¹ H NMR spectrum of 6,6'-(2-aminoethylazanediyl)bis(methylene)dipicolinic acid (H ₂ pentapa-en-NH	H ₂) 22
20)	Figure S20. ¹³ C NMR spectrum of 6,6'-(2-aminoethylazanediyl)bis(methylene)dipicolinic	acid
	(H ₂ pentapa-en-NH ₂)	23
21)	Figure S21. Mass spectrum of 6,6'-(2-aminoethylazanediyl)bis(methylene)dipicolinic acid (H ₂ pentap	a-en-
	NH ₂)	24
22)	Figure S22. ¹ H NMR spectrum of methyl 2-(2-chloroacetamido-4-(methylthio)butanoate (10)	25
23)	Figure S23. ¹³ C NMR spectrum of methyl 2-(2-chloroacetamido-4-(methylthio)butanoate (10)	26

Figure S24. Mass spectrum of methyl 2-(2-chloroacetamido-4-(methylthio)butanoate (10) 27						
25) Figure S25. ¹ H NMR spectrum of 6-(9-carboxy-5-(1-carboxy-3-(methylthio) pro	pylamino)-2-oxoethyl)-2((6-					
carboxypyridin-2-yl)methyl)-7-oxo-12thia-2,5,8-triazatridecyl)picolonic acid (\mathbf{H}_2	pentapa-en-met ₂) 28					
26) Figure S26. ¹³ C NMR spectrum of 6-(9-carboxy-5-(1-carboxy-3-(methylthio) pro-	pylamino)-2-oxoethyl)-2-((6-					
carboxypyridin-2-yl)methyl)-7-oxo-12thia-2,5,8-triazatridecyl)picolonic acid (\mathbf{H}_2	pentapa-en-met ₂) 29					
27) Figure S27. Mass spectrum of 6-(9-carboxy-5-(1-carboxy-3-(methylth	nio) propylamino)-2-oxoethyl)-2-((6-					
carboxypyridin-2-yl)methyl)-7-oxo-12thia-2,5,8-triazatridecyl)picolonic acid (\mathbf{H}_2	pentapa-en-met ₂) 30					
28) Figure S28. Mass spectrum of Cu-H ₂ pentapa-en-NH ₂	31					
29) Figure S29. Mass spectrum of Cu-H ₂ pentapa-en-met ₂	32					
30) Figure S30 . HPLC Profile of H ₂ pentapa-en-NH ₂	33					
31) Figure S31 . HPLC Profile of H ₂ pentapa-en-met ₂	34					
32) Figure S32. In silico DFT predicted electrostatic potential map of [ReO(pentapa-en-NH ₂)] ⁺ and Cu-pentapa-						
en-NH $_2$ varying from -0.20 a.u. to +0.35 a.u. and -0.07 a.u. to +0.05 a.u. respective	ely 35					
33) Figure S33. DFT studies showing the bond lengths after coordination of Rhenium	h oxocore to H_2 pentapa-en-met ₂ 36					
34) Figure S34. Effect of pH on radio chemical yield of H_2 pentapa-en-NH ₂ and H_2 per	ntapa-en-met ₂ with 99m Tc 37					
35) Figure S35. Effect of stannous chloride concentration on radio chemical yield of H ₂ pentapa-en-NH ₂ and H ₂ pentapa-en-						
met ₂ with ^{99m} Tc	37					
36) Figure S36. ITLC profile of ^{99m} Tc complexes of H ₂ pentapa-en-NH ₂ and H ₂ pentap	pa-en-met ₂ at various time intervals in					
PBS buffer using pyridine/acetic acid/water (3:5:1.5) as mobile phase	38					
37) Figure S37 . ITLC profile of 99m Tc complexes of H ₂ pentapa-en-NH ₂ and H ₂ pentap	pa-en-met ₂ at various time intervals in					
human serum using pyridine/acetic acid/water (3:5:1.5) as mobile phase	38					
38) Table S1. Comparison of bond lengths obtained through DFT studies of rheni bond lengths of reported XRD crystal structure of methionine conjugated rhenium	um oxocore of penatapa-en-met ₂ with a oxocore. 39					
39) Figure S38. (a) HPLC profile and (b) mass spectrum of Re-pentapa-en-NH ₂ ; (c) HPLC profile (γ - detector) of ^{99m} Tc-pentapa-en-NH ₂ 40						
40) Figure S39. HPLC profile of co-injected metal complexes of Re-pentapa-en- NH_2	and Tc-pentap-en- NH_2 41					
41) Figure S40. IR spectrum of Re-pentapa-en- NH_2 41						

Figure S1. ¹H NMR spectrum of diethyl pyridine-2,6-di carboxylate (2)

Figure S2. ¹³C NMR spectrum of diethyl pyridine-2,6-di carboxylate (2)

Figure S3. Mass spectrum of diethyl pyridine-2,6-di carboxylate (2)

Figure S4. ¹H NMR spectrum of ethyl 6-(hydroxylmethyl)picolinate (3)

Figure S5. ¹³C NMR spectrum of ethyl 6-(hydroxylmethyl)picolinate (3)

Figure S6. Mass spectrum ethyl 6-(hydroxylmethyl)picolinate (**3**)

Figure S7. ¹H NMR spectrum of ethyl 6-(chloromethyl)picolinate (4)

Figure S8. ¹³C NMR spectrum of ethyl 6-(chloromethyl)picolinate (4)

Figure S9. Mass spectrum of ethyl 6-(chloromethyl)picolinate (4)

Figure S10. ¹H NMR spectrum of *tert*-butyl 2-aminoethylcarbamate (6)

Figure S11. ¹³C NMR spectrum of *tert*-butyl 2-aminoethylcarbamate (6)

Figure S12. Mass spectrum *tert*-butyl 2-aminoethylcarbamate (6)

Figure S13. ¹H NMR spectrum of

diethyl 6,6'-(2(*tert*-butoxycarbonylamino)ethylazanediyl)bis(methylene)dipicolinate (7)

Figure S14. ¹³C NMR spectrum of

diethyl 6,6'-(2(*tert*-butoxycarbonylamino)ethylazanediyl)bis(methylene)dipicolinate (7)

Figure S15. Mass spectrum of

diethyl 6,6'-(2(*tert*-butoxycarbonylamino)ethylazanediyl)bis(methylene)dipicolinate (7)

Figure S16. ¹H NMR spectrum of

diethyl 6,6'-(2-aminoethylazanediyl)bis(methylene)dipicolinate (8)

Figure S17. ¹³C NMR spectrum of

diethyl 6,6'-(2-aminoethylazanediyl)bis(methylene)dipicolinate (8)

Figure S18. Mass spectrum of

diethyl 6,6'-(2-aminoethylazanediyl)bis(methylene)dipicolinate (8)

Figure S19. ¹H NMR spectrum of 6,6'-(2-aminoethylazanediyl)bis(methylene)dipicolinic acid (**H**₂**pentapa-en-NH**₂)

Figure S20. ¹³C NMR spectrum of 6,6'-(2-aminoethylazanediyl)bis(methylene)dipicolinic acid (**H**₂**pentapa-en-NH**₂)

Figure S21. Mass spectrum of 6,6'-(2-aminoethylazanediyl)bis(methylene)dipicolinic acid (**H**₂**pentapa-en-NH**₂)

Figure S22. ¹H NMR spectrum of methyl 2-(2-chloroacetamido-4-(methylthio)butanoate (10)

Figure S23. ¹³C NMR spectrum of methyl 2-(2-chloroacetamido-4-(methylthio)butanoate (10)

Figure S24. Mass spectrum of methyl 2-(2-chloroacetamido-4-(methylthio)butanoate (10)

Figure S25. ¹H NMR spectrum of 6-(9-carboxy-5-(1-carboxy-3-(methylthio) propylamino)-2-oxoethyl)-2((6-carboxypyridin-2-yl)methyl)-7-oxo-12thia-2,5,8-triazatridecyl)picolonic acid (**H**₂**pentapa-en-met**₂)

Figure S26. ¹³C NMR spectrum of 6-(9-carboxy-5-(1-carboxy-3-(methylthio) propylamino)-2-oxoethyl)-2-((6-carboxypyridin-2-yl)methyl)-7-oxo-12thia-2,5,8-triazatridecyl)picolonic acid (**H**₂**pentapa-en-met**₂)

Figure S27. Mass spectrum of 6-(9-carboxy-5-(1-carboxy-3-(methylthio) propylamino)-2oxoethyl)-2-((6-carboxypyridin-2-yl)methyl)-7-oxo-12thia-2,5,8-triazatridecyl)picolonic acid (**H**₂**pentapa-en-met**₂)

Figure S28. Mass spectrum of Cu-H2pentapa-en-NH2

Figure S29. Mass spectrum of Cu-H2pentapa-en-met2

Figure S30. HPLC Profile of H2pentapa-en-NH2

Figure S31. HPLC Profile of H2pentapa-en-met2

Figure S32. In silico DFT predicted electrostatic potential map of $[ReO(pentapa-en-NH_2)]^+$ and **Cu-pentapa-en-NH_2** varying from -0.20 a.u. to +0.35 a.u. and -0.07 a.u. to +0.05 a.u. respectively

Figure S33. DFT studies showing the bond lengths after coordination of Rhenium oxocore to H_2 pentapa-en-met₂

Figure S34. Effect of pH on radio chemical yield of H_2 pentapa-en-NH₂ and H_2 pentapa-en-met₂ with ^{99m}Tc

Figure S35. Effect of stannous chloride concentration on radio chemical yield of H_2 pentapaen-NH₂ and H_2 pentapa-en-met₂ with ^{99m}Tc

Figure S36. ITLC profile of 99m Tc complexes of H₂pentapa-en-NH₂ and H₂pentapa-en-met₂ at various time intervals in PBS buffer using pyridine/acetic acid/water (3:5:1.5) as mobile phase

Figure S37. ITLC profile of 99m Tc complexes of H₂pentapa-en-NH₂ and H₂pentapa-en-met₂ at various time intervals in human serum using pyridine/acetic acid/water (3:5:1.5) as mobile phase

Table S1. Comparison of bond lengths obtained through DFT studies after coordination of rhenium oxocore to penatapa-en-met₂ with bond lengths of reported XRD crystal structure of methionine conjugated rhenium oxocore.

	Re–O	Re–O	Re-N	Re-S
	(Re=O)	(Re-O-C=O)		
Met-Re [ReOX ₂ (Met)]	1.66 Å	2.05 Å	2.14 Å	2.42 Å
			(Re–NH ₂)	
$\text{ReO}[\text{penatapa-en-met}_2]^+$	1.72 Å	2.01 Å,	2.16 Å,	
(1)		2.09 Å	2.17 Å	-
$\text{ReO}[\text{penatapa-en-met}_2]^+$	2.01 Å	4.04 Å,		4.06 Å,
(2)		5.71 Å	-	3.64 Å
$ReO[penatapa-en-met_2]^+$	1.71 Å	4.55 Å,	2.65 Å	7.90 Å
(3)		5.65 Å		

Figure S38. (a) HPLC profile and (b) mass spectrum of Re-pentapa-en-NH₂; (c) HPLC profile (γ - detector) of ^{99m}Tc-pentapa-en-NH₂

Figure S39. HPLC profile of co-injected metal complexes of Re-pentapa-en-NH $_2$ and Tc-pentapa-en-NH $_2$

Figure S40. IR spectrum of Re-pentapa-en-NH₂