Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2014

Fig. SF1 TGA curve of as obtained NiFe₂O₄

Fig. SF2 FTIR Spectra of (a) ZnFe₂O₄ (b) NiFe₂O₄ (c) CoFe₂O₄ and (d) CuFe₂O₄ annealed at (A) 400 °C and (B) 1000 °C.

Ferrite	D _{TEM} (nm)	Crystallite size (nm)	Lattice Parameter (Å)	Eg (eV)	M _s (emu/g)	H _c (Oe)
CoFe ₂ O ₄	20	25.80	8.388	1.26	65	1150
NiFe ₂ O ₄	25	26.12	8.350	2.08	19	70
CuFe ₂ O ₄	15	17.51	8.381	1.38	60	300
ZnFe ₂ O ₄	30	30.06	8.442	1.94	6	25

Table ST1 Different parameters of MFe₂O₄ (M= Co, Ni, Cu and Zn) annealed at 400 $^{\circ}\mathrm{C}$

Calculus of BET surface area analysis

The unique values of Q_m and C which were estimated from slope (A) and intercept (I) of BET plots can be calculated according to following equations:

$$Q_m = \frac{1}{A+I} \tag{1}$$

$$C = 1 + \frac{A}{I} \tag{2}$$

In addition, total surface area and specific surface area were obtained using following equations:

$$S_{total} = \frac{Q_m N_s}{V}$$
(3)

$$S_{BET} = \frac{S_{total}}{M} \tag{4}$$

where N is Avogadro's number, s (0.1620 nm^2) is the molecular cross-sectional area, V is the molar volume of the adsorbate gas and M is the mass of the adsorbent sample.