Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2014

Electronic Supplementary Information (ESI):

Synthesis of porous In₂O₃ microspheres as sensitive materials for early warnings of hydrocarbon explosion

Yang Cao^{a,‡}, Jun Zhao^{a,c,‡}, Xiaoxin Zou^a, Pan-Pan Jin^a, Hui Chen^b, Ruiqin Gao^a, Li-Jing Zhou^a, Yong-Cun Zou* and Guo-Dong Li^a

^aState Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China E-mail: zouyc@jlu.edu.cn (Yong-Cun Zou)
^bSchool of Materials Science and Engineering, China University of Mining and Technology, Xuzhou 221000, China
^cCollege of Science, Hebei University of Science and Technology, Shijiazhuang 050018, China
[‡] The authors contributed equally to this work.

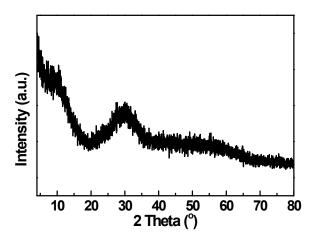
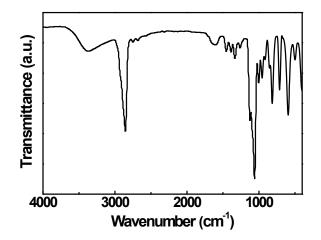
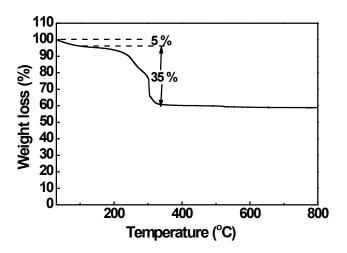




Figure S1 XRD pattern of In-gly. The result demonstrates the In-gly precursor possesses an amorphous structure.

Figure S2 IR spectrum of In-gly. The broad IR absorption band at ~3390 cm⁻¹ is attributed to hydrogen-bound hydroxyl groups, and the absorption band at ~2850 cm⁻¹ is characteristic of the C-H stretching vibrations. In addition, all the bands located below 2000 cm⁻¹ are generally assigned to In-O, C-C, C-C-O and C-O-In groups. Similar IR results were also observed previously for other metal alkoxides (Nanoscale, 2014, 6, 7255; Dalton Trans., 2013, 42, 4365; Dalton Trans., 2013, 42, 14357).

Figure S3 TG curve of In-gly measured in air from 25 to 800 °C. Before 100 °C, the weight loss of 5% can be attributed to evaporation of the absorbed organic residues and water species on the In-gly surface. The In-gly precursor completely decomposed at around 350 °C with a total weight loss of ~35 %. From the weight loss values it is estimated that the indium content in the In-gly precursor is ~46.6 wt.%.

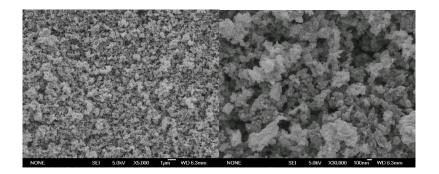


Figure S4 SEM images of com-In₂O₃.