Supporting Information

X-Ray structure determination

Diffraction data were collected exploring over a hemisphere of the reciprocal space in a combination of φ and ω scans to reach a resolution of 0.86 Å, using a Bruker APEX2¹ software suite (each exposure of 40 s covered 1° in ω . Unit cell dimensions were determined for least-squares fit of reflections with I > 20 σ . A semi-empirical absorption and scale correction based on equivalent reflection was carried out using SADABS.² The space group determination was carried out using XPREP.³ The structures were solved by direct methods. The final cycles of refinement were carried out by full-matrix least-squares analyses with anisotropic thermal parameters of all non-hydrogen atoms. The hydrogen atoms were fixed at their calculated positions using distances and angle constraints. All calculations were performed using SMART⁴ and APEX2¹ software for data collection, SAINT² for data reduction, and SHELXTL³ to resolve and refine the structure.

Formula	InPF-12 C ₇₅ H ₄₄ F ₁₈ N ₄ O ₁₄ In ₂	InPF-13 C ₇₁ H ₄₄ F ₁₈ N ₄ O ₁₄ In ₂	$\begin{array}{l} \textbf{InPF-14} \\ C_{61}H_{32}F_{18}N_2O_{12}In_2 \end{array}$	InPF-15 C ₇₈ H ₄₄ F ₂₄ N ₂ O _{20.35} In ₄
Molecular Weight /gmol-1	1796.78	1748.74	1556.53	2252.43
Temperature/K	296(2)	293(2)	293(2)	296(2)
Wavelength/Å	Cu Ka	Cu Ka	Cu Ka	Cu Ka
Crystal System	Monoclinic	Monoclinic	Monoclinic	Monoclinic
Space Group	C2/c	C2/c	C2/c	$P2_l/n$
a/Á b/Á c/Á $\alpha/^{\circ}$ $\beta/^{\circ}$ $\gamma/^{\circ}$	33.0893(4) 12.9108(2) 22.2089(3) 90 129.956(1) 90	32.6149(5) 12.4824(2) 21.4240(3) 90 129.055(1) 90	38.278(1) 7.7778(2) 26.8178(8) 90 129.831(1) 90	24.165(2) 13.456(1) 27.388(3) 90 111.227(6) 90
$V/{\rm \AA}^3$	7272.8(2)	6773.0(2)	6131.4(3)	8301.6(1)
Z	4	4	4	4
Dx/ g.cm ³	1.641	1.715	1.686	1.802
µ/mm ⁻¹	6.088	6.516	7.076	9.905
F(000)	3576	3480	3072	4408
GOF F ²	0.995	1.056	1.040	1.014
Final R indices [I>2 σ (I)]	R1=0.0336 wR2=0.0888	R1=0.0382 wR2=0.0913	R1=0.0484 wR2=0.1165	R1=0.0532 wR2=0.1049
R indices (all data)	R1=0.0422 wR2=0.0953	R1=0.0494 wR2=0.0969	R1=0.0707 wR2=0.1308	R1=0.0927 wR2=0.1210

Table S1 Main crystallographic and refinement data for compounds InPF-12 to InPF-15.

Fig. S1 ORTEP representation of asymmetric units for compounds InPF-12 (a), InPF-12 (b), InPF-14 (c) and InPF-15 (d). Ellipsoids are displayed at the 50% probability level Hydrogen atoms and water molecules were omitted for clarity.

 $\begin{array}{c} d \ F9 \cdots F1 \\ ^{\prime} = 2.723 \\ \overset{\circ}{A} \ d \ C26 \\ -F9 \\ \cdots F1 \\ ^{\prime} = 3.805 \\ \overset{\circ}{A} \ d \ C9 \\ ^{\prime} \\ -F1 \\ \cdots F9 \\ = 3.552 \\ \overset{\circ}{A} \\ \theta_1 \\ : 117.96 \\ ^{\circ} \ \theta_2 \\ : 153.41 \\ ^{\circ} \ \phi \\ : 26.32 \\ ^{\circ} \end{array}$

Fig S2 View of the weak F•••F interactions found in InPF-12.

Fig. S3 View of the weak C-H•••F interactions found in InPF-13.

CG-MS for Catalytic Product Characterization

In order to identify the principal product in the cyanosilylation reaction and obtain the conversion yield, small amounts of catalytic sample at different reaction times were analyzed through CG-MS. The yields reported in the document tables were determined by the area under the curve in the reported chromatogram.

Fig. S4 View of the CG-MS for the cyanohydrin (a)

Fig. S6 View of the CG-MS for the cyanohydrin (c)

Fig. S8 View of the CG-MS for the cyanohydrin (e)

Fig. S10 View of the CG-MS for the cyanohydrin (g)

Fig. S12 View of the CG-MS for the cyanohydrin (i)

Characterization methods

IR: Infrared spectra were recorder from KBr pellets in the range 4000-250 cm⁻¹ on a Bruker IFS 66V/S. TGA-DTA: Thermogravimetric and differential thermal analyses were performed using a Seiko TG/DTA 320U equipment in a temperature range between 25 and 1000 °C in air (100 mL/min flow) and heating rate of 10°C/min. The residues of the compounds after TGA were analyzed by PXRD and compared with inorganic crystal structure database (ICSD)⁵ patterns reported. EA: A Perkin-Elmer CNHS Analyzer 2400 was employed for the elemental analysis. PXRD: Powder X-ray diffraction patterns were measured with a Bruker D8 diffractometer, with step size = 0.02 ° and exposure time = 0.5 s/step. PXRD measurements were used to check the purity of the obtained microcrystalline products by a comparison of the experimental results with the simulated patterns obtained from single-crystal X-ray diffraction data.

Fig. S13 Normalized PXRD patterns of InPF-11: a) simulated PXRD, b) experimental PXRD and c) PXRD after the first run of cyanosilylation catalysis.

Fig. S14 Normalized XRD patterns of InPF-12: a) simulated PXRD, b) Experimental PXRD and c) PXRD after the first run of cyanosilylation catalysis.

Fig. S15 Normalized XRD patterns of InPF-13: a) simulated PXRD, b) Experimental PXRD and c) PXRD the after first run of cyanosilylation catalysis.

Fig. S16 Normalized XRD patterns of InPF-14: a) simulated PXRD, b) Experimental PXRD and c) PXRD after the first run of cyanosilylation catalysis.

Fig. S17 Normalized XRD patterns of InPF-15: a) simulated PXRD, b) Experimental PXRD and c) PXRD after the first run of cyanosilylation catalysis.

Fig. S18 TGA profiles of InPF-11 to InPF-15 compounds performed in air (flow of 100 mL.min-1) with a heating rate of 10 °C/min.

Fig. S19 PRXD profiles for TGA residues of indium catalysts: a) InPF-11, b) InPF-12, c) InPF-13, d) InPF-14 and e) InPF-15. The final residue at 800°C for all catalysts is pure In2O3 (ICSD_640179), confirmed by XRPD.

Fig. S20 FTIR spectra of compounds InPF-12 in the 4000-300 cm-1 range.

Fig. S21 FTIR spectra of compounds InPF-13 in the 4000-300 cm-1 range.

Fig. S22 FTIR spectra of compounds InPF-14 in the 4000-300 cm-1 range.

Fig. S23 FTIR spectra of compounds InPF-15 in the 4000-300 cm-1 range.

References

- 1 APEX2; Bruker-AXS: Madison, WI, 2006.
- 2 Siemens SAINT Data Collection and Procedure Software for the SMART System, Siemens Analytical X-ray Instruments, Inc., Madison, WI, 1995.
- 3 Siemens SHELXTL, Version 5.0, Siemens Analytical X-ray Instruments Inc., Madison, WI, 1995.
- 4 Software for the SMART System V5. 0.4 and SHELXTL V 5.1, Bruker-Siemens Analytical X-ray Instrument Inc., Madison, WI, 1998.
- 5 Inorganic Crystal Structure Database, ICSD.