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I. DERIVATION AND SOLUTION OF GOVERNING EQUATIONS FOR UNIFORM DISTRIBUTION
OF POLYELECTROLYTE CHARGEABLE SITES (PCS) WITHIN THE PEL

The free energy can be expressed as:
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where f is the free energy density, expressed as:
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Here n4- is the number density of the PEL ions, which can be related to the local hydrogen ion concentration through
the following equation of state (this equation of state comes from the reaction equilibrium condition, see [1]):
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where K! = 103N4K, [Na is the Avogadro number, K, (having units of moles/liter) is the ionization constant of
the acid dissociating to produce A~ ions (or PEL ions)] and v is the maximum density of the PCS (in units of
1/m?). Also in eq.(2), € is the permittivity of free space, €, is the relative permittivity of the medium (assumed
identical for the media both inside and outside the PEL, e is the electronic charge, kgT is the thermal energy, n; and
Nico are the number density and the bulk number density of ion ¢ (i = £, H*, OH~). Also both the PEL ions and
the electrolyte ions are assumed to be monovalent.

In order to obtain the equilibrium conditions, we next minimize eq.(2) [after using eq.(3) to replace n - in terms of
nyg+ in eq.(2)] with respect to ¥, ny, n—, ng+, nog--

Minimizing with respect to v yields:
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Minimizing with respect to ni yields:
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Minimizing with respect to nog- yields:
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Minimizing with respect to ng+ yields:
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Using eqn.(5,6,7) in eqn.(4), we shall get:
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Please note that since ny+ variation is not explicit in 1) in the region —h <y < —h + d [see the first part of eq.(7)]
the first part of eq.(8) is not explicit in . Therefore, we shall need to solve 1 and ng+ simultaneously from eqs.(7,8)
The corresponding boundary conditions will be:
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We shall first express eqs.(7,8,9) in dimensionless forms as:
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where §j = y/h, X = A/h (A = /9=22L is the EDL thickness), d = d/h, ¥ = e/(kpT), g+ = ng+/neo,
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In order to solve the coupled equations [eqs.(10,11)], we first eliminate ) and obtain the governing equation and the
boundary conditions solely in terms of 7i7+. The resulting equations are:

_ Q' 1 P(Q)?
d2n + &_2P§_PQ2 +2 3 _QS _ =
df; ] Q PQE) o Q [for —1<gy<-1+d|,
Y @ ~Q
Py 1 dig+\> (14 fon- s T4 i oo\ 734 .
= — | ——==n = fi —14+d<y<0 13
de (’I’LH+> ( dy 2)\2 Mt oo F 2)2 NH+ 00 [01' tesys ]7 ( )
where
Pln(”H+ > (14)
NH+
4P 1 dig-

P="=_
dy ng+ dy

1 dng+ 2
P = 1
! (”H+ dy > ’ 16)




1
P, = — , 17
2 N+ ( )
K'~
Q:1+ o’ P} (18)
(K(’l+ﬁH+>
_,
Q/ @ _9 _ Ka7 d’leJr, (19)
dy (K +7g+)” 4
K’ dn
Q1 = 6——a' 4< Ii”>7 (20)
(K, +7ig+) dy
K'~
Q2 = —2-— “j (21)

and

1 . P NOH- 0o P N+ 1 K"V
- h{=— 0 i — ¢ . 22
@ =33 [Sm (Q)+ 2 eXp(Q) > 2R fag, (22)

Finally the boundary conditions [see eq.(12)] can now be expressed in terms of fiy+ as:
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Eq.(13) can be solved in presence of the boundary conditions specified in eq.(23). From the 2nd and 3rd conditions
of eq.(23), it is easy to note this solution will produce discontinuity in the value and the slope of fiz+ at the PEL-

electrolyte interface (i.e., y = —1 4 d).

II. DERIVATION AND SOLUTION OF GOVERNING EQUATIONS FOR NON-UNIFORM
DISTRIBUTION OF POLYELECTROLYTE CHARGEABLE SITES (PCS) WITHIN THE PEL

It is evident that the procedure illustrated above cannot ensure continuities in the value and in the gradient of both
¢ and g+ simultaneously. This unphysical condition results from the electrostatic contribution of the PEL charges
and the fact that the corresponding charge density is a function of the local hydrogen ion concentration. To be more
specific, this unphysical condition occurs because the relationship between 1) and 7+ at the PEL-electrolyte interface
(i.e., the dimensionless location 4 = —1 4 d) differs depending on whether the interface is approached from the PEL
side or from the electrolyte side. This happens since the PEL is assumed to consist of uniform depth dependent
distribution of the chargeable sites. To counter this, here we shall consider a non-uniform distribution of chargeable
sites (within the PEL), described by a dimensionless function ¢(y), which in turn will ensure continuities of both
the value as well as the gradient of both ¢ and g+ at the PEL-electrolyte interface, and at the same time ensure
no flux of hydrogen ions at the PEL-solid interface (i.e., the dimensionless location § = —1). Also ¢(y) must satisfy
the constraint of the total number of chargeable sites on a given polyelectrolyte. Considering this number as N, and
assuming that ¢ is the area corresponding to a single polyelectrolyte chain and « is the chain thickness, we can write:
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Please note that for the case of uniform distribution of chargeable sites, N, = od/a>.
In this scenario of the non-uniform density of the chargeable sites, the free energy density can be expressed as:
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where « is the Lagrange multiplier and n 4- is provided by eq.(3).
To obtain the equilibrium condition, we shall minimize eq.(25) with respect to @, ny, n_, ng+, nog- and o(y).

Minimizing with respect to v gives
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Minimizing with respect to ny gives:
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Minimizing with respect to ng+ yields:
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Minimizing with respect to ¢ yields:
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Eq.(30) clearly shows that by minimizing with respect to ¢(y), we can only get a condition dictating the Lagrange
multiplier, and not the functional form of p(y). Solution procedure to obtain ¢(y), in this light, will be discussed

later. Below we first discuss obtaining the governing differential equations [which are dependent on ¢(y)] that dictate
the problem.
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Using eqs.(27,28,29) in eq.(26) as well as the condition expressed in eq.(29) we shall get the governing equations
in dimensionless forms as [¢(y), which is dimensionless, is henceforth considered to be a function of g|
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The boundary conditions for eqs.(31,32) are the ones expressed in eq.(12). Just like the previous case, here too we
shall first eliminate ¢ and obtain the boundary conditions solely in terms of ny+. The resulting equations are:
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Finally the boundary conditions [see eq.(12)] can now be expressed in terms of nz+ as:
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In addition to the first condition of eq.(40), we must have such a distribution of () that will ensure the following:
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As we have seen minimization of the free energy functional does not produce any specific functional form of (7).
Therefore, ¢() can be any function as long as it satisfies eqs.(24,42,43,44) simultaneously. The simplest possible form
of () that satisfies these four conditions will be a cubic function, expressed as:
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where 8 = is a new parameter.
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