Cite this: DOI: 10.1039/c0xx00000x

www.rsc.org/xxxxx

ARTICLE TYPE

Phthalocyanine-titanate Nanotubes: a promising nanocarrier detectable by optical imaging in the so-called imaging window

Jérémy Paris,^{*a*} Yann Bernhard,^{*b*} Julien Boudon,^{*a*} Olivier Heintz,^{*a*} Nadine Millot*^{*a*}, and Richard A. ⁵ Decréau*^{*b*}

DOI: 10.1039/b000000x

^a Laboratoire Interdisciplinaire Carnot de Bourgogne (ICB), UMR 6303 CNRS-Université de Bourgogne, BP 47870, F-21078, Dijon Cedex, France. Email: Nadine.Millot@u-bourgogne.fr

^b Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB), UMR 6302 CNRS-Université de Bourgogne, BP 47870, F-21078, Dijon Cedex, 10 France; E-mail: Richard.Decreau@u-bourgogne.fr

Outline

1.	Drawings of Nanotubes (TiONts), Phthalocyanines (Pcs), and TiONt-Pcs Nanohybrids	1
s 2.	Characterizations of the bare nanotubes (TiONts) and functionalized-nanotubes (TiONts-X)	5
3.	1H-NMR Characterization of the A3B + A4 Phthalocyanines (Pc) mixture 3c	7
4. 0	Characterizations of the TiONts–Pc conjugates 1a and 1b	8
5.0	Characterizations of the TiONts–Pc conjugates 1c	.12

²⁰ 1. Drawings of Nanotubes (TiONts), Phthalocyanines (Pcs), and TiONt-Pcs Nanohybrids

Bare TiONts

TiONts-NH₂ (2a)

s TiONts-N₃ (2c)

4-(carboxylato)phenoxy)phthalonitrile (4a)

2 | Journal Name, [year], [vol], 00–00

10

15

20

4-(amino)phenoxy)phthalonitrile (4b)

s 4-(4-((trimethylsilyl)ethynyl)phenoxy)phthalonitrile (4c)

4-(4-bromophenoxy)phthalonitrile (4d)

2-(4-(carboxy)phenoxy)-phthalocyaninato zinc(II) (3a)

2-(4-(amino)phenoxy)-phthalocyaninato zinc(II) (3b)

2-(4-(alkynyl)phenoxy)-phthalocyaninato zinc(II) (3c)

This journal is $\ensuremath{\mathbb{C}}$ The Royal Society of Chemistry [year]

TiONts-Pc 1a/1b

2. Characterizations of the bare nanotubes (TiONts) and functionalized–nanotubes (TiONts–X)

2.1. Characterization by TEM

Fig S1bis. TEM images of functionalized titanate nanotubes (TiONts–X): 2a: TiONts–NH₂; 2b: TiONts–COOH; 2c: TiONts–N₃

This journal is © The Royal Society of Chemistry [year]

2b

2c

	J							
		Atomic concentration (%)						
	Ti 2p	O 1s	C 1s	Na KLL	N 1s	Si 2p	Р 2р	
TiONts	21	59	6	14	-	-	-	
2a	19	54	13	8	3	3	-	
2b	21	59	16	3	-	-	1	
2c	16	49	23	4	6	2	-	

2.2. Characterization by XPS

Table S1. Atomic concentration of bare titanate nanotube and functionalized titanate nanotubes (TiONts-X): 2a: TiONts-NH₂; 2b: TiONts-COOH; 2c: TiONts-N₃

Fig S2. C1s contribution of bare titanate nanotubes and functionalized titanate nanotubes (TiONts–X): 2a: TiONts–NH₂; 2b: TiONts–COOH; 2c: TiONts–N₃

Fig S2bis. Zeta-potential of functionalized nanotubes TiONts-COOH 2b

3. 1H-NMR Characterization of the A3B+A4 phthalocyanine mixture

Fig. 2tris. 1H-NMR (300 MHz, in DMSO-d6, 300K) of the A3B+A4 phthalocyanine mixture (Ratio A3B:A4 is 4:7).

Fig S2tris. 1H-NMR of the A3B+A4 phthalocyanine mixture. (Continued)

4. Characterizations of the TiONts–Pc conjugates 1a and 1b

4.1. Characterization by TEM

Fig S3. TEM micrographs showing (A) TiONts–Pc **1a**, (B) TiONts–Pc **1b** (note that the concentration in this sample was high enough to demonstrate this peculiar organization, this is not due to agglomeration)

8 | Journal Name, [year], [vol], 00–00

4.2. Characterization by XPS

Fig S4. XPS spectra for C1s and N1s contribution in conjugate TiONts-Pc 1a and 1b

15

4.3. Characterization by TGA

Fig S5. TGA curves of bare titanate nanotube (TiONts), functionalized titanate nanotubes (TiONts–X): 2a: TiONts–NH₂; 2b: TiONts–COOH and conjugate TiONts–Pc 1a-b

	Total Δm (%)	calc. Δm (%)	Molar mass M _{XX} (g.mol ⁻¹)	molecules/nm ²
TiONts	3.8	3.8	18	6.0 OH
2a	8.0	8.0	58	5.7 NH ₂
1a	11.1	3.1	714	0.15 Pc
2b	10.9	10.9	115	3.1 COOH
1b	12.8	1.9	685	0.1 Pc

Table S2. TGA results of bare titanate nanotube (TiONts), functionalized titanate nanotubes (TiONts–X): 2a: TiONts–NH₂; 2b: TiONts–COOH; 2c: TiONts–N₃ and conjugate TiONts–Pc 1a, 1b and 1c

¹⁰ The coverage is calculated as follows:

$$N_{Molecules} = \frac{(\text{calc. } \Delta \text{m}). N_A}{M_{XX}. S_{BET}. 10^{18}}$$

<u>Area calculations of TiONts</u> (cylinder area): $A = 2\pi rh$

¹⁵ The outer surface of a cylinder 156 nm long (h) , 9.1 nm in diameter (2r) is: $A = 2\pi rh = 2\pi \times 9.1/2 \times 156 = 4460 \text{ nm}^2$

10 | *Journal Name*, [year], **[vol]**, 00–00

Calculation of Pc/TiONts:

1a - TiONts-COOH/Pc = 0.15 Pc/nm² → 4460 × 0.15 = 669 Pc/TiONts 5 1b - TiONts-NH₂/Pc = 0.1 Pc/nm² → 4460 × 0.1 = 446 Pc/TiONts 1c - TiONts-N₃/Pc = 0.1 Pc/nm² → 4460 × 0.1 = 446 Pc/TiONts

4.4. Characterization by UV/Vis

¹⁰ Fig S6. UV/Vis spectra in DMSO of conjugate TiONts–Pc 1a and 1b, compared to that of bare titanate nanotubes (TiONts).

4.5. Fluorescence Imaging Properties of TiONts-Pc Conjugates 1a-b

ARTICLE TYPE

Fig S8. Fluorescence spectra of conjugates 1a and 1b, compared to that of bare titanate nanotubes (TiONts) in DMSO.

5. Characterizations of the TiONts-Pc conjugates 1c

Fig S9. XPS spectra for C1s contribution in conjugate TiONts-Pc 1c

5.2. Characterization by TGA

	Total Δm (%)	calc. Δm (%)	Molar mass M _{XX} (g.mol ⁻¹)	molecules/nm ²
2c	19.3	9.2	555	0.6 PEG-N ₃
1c	21.1	1.8	692	0.1 ZnPc

Fig S10. TGA curves of functionalized titanate nanotubes (TiONts–X): 2c: TiONts–N₃ and conjugate TiONts–Pc 1c

Fig S11. Conjugates a) TiONts–Pc **1a**, b) TiONts–Pc **1b** c) TiONts–Pc **1c** (as prepared suspension for zeta-potential measurement)

5