Electronic Supplementary Information for

The efficient and selective biocatalytic oxidation of norisoprenoid and

aromatic substrates by CYP101B1 from Novosphingobium aromaticivorans

DSM12444

Emma A. Hall and Dr. Stephen G. Bell*

Table S1. Comparison of the sequence identities of CYP101B1, CYP101B2 (*N. tardaugens*), CYP101A1 (*P. putida*), CYP101D1, CYP101D2, CYP101C1 (all *N. aromaticivorans*, P450cin (*C. braakii*) CYP109D1, CYP246B1 (both *S. cellulosum*) and CYP105D1 (*S. griseus*). We note that other P450s from *S. cellulosum* had greater similarity to CYP101B1 the greatest being CYP124E1.

CYP101B1	Identities	Positives	Gaps	Score
CYP101B2	236/398(59%)	297/398(74%)	6/398(1%)	489
CYP101D2	184/403(46%)	254/403(63%)	9/403(2%)	348
CYP101A1	173/395(44%)	236/395(59%)	3/395(1%)	340
CYP101D1	177/401(44%)	249/401(62%)	9/401(2%)	327
CYP101C1	142/395(36%)	218/395(55%)	5/395(1%)	256
P450cin	102/373(27%)	169/373(45%)	6/373(1%)	145
CYP109D1	95/307(31%)	142/307(46%)	16/307(5%)	122
CYP105D1	88/313(28%)	144/313(46%)	13/313(4%)	107
CYP264B1	79/332(24%)	138/332(41%)	15/332(4%)	70.5

Table S2 The comparison of likely residues in the active site, substrate binding channel and in close proximity of the heme of CYP101B1 (based on the CYP101C1, CYP101D1 and CYP101D2 structures) and the corresponding residues in CYP101B2, CYP101D2, CYP101A1, CYP101D1 and CYP101C1.

CYP101B1	CYP101B2	CYP101D2	CYP101A1	CYP101D1	CYP101C1
Arg72	Arg76	Glu84	Glu84	Arg85	Gln70
Ile74	Ile78	Ile86	Pro86	Ile87	Leu72
Val75	Val79	Phe87	Phe87	Trp88	Ala73
Val76	Va180	Ala92	Ala92	Ala93	Leu78
Gly77	Gly81	Gly93	Gly93	Gly94	Gly79
Glu78	Glu82	Glu94	Glu94	Glu95	Lys80
<u>His80</u>	<u>His84</u>	<u>Tyr96</u>	<u>Tyr96</u>	<u>Tyr97</u>	<u>Met82</u>
Gly81	Gly85	Gln97	Asp97	Asp98	Gln83
<u>Leu82</u>	<u>Leu86</u>	<u>Met98</u>	<u>Phe98</u>	<u>Met99</u>	<u>Phe84</u>
Thr85	Thr89	Thr101	Thr101	Thr102	Leu87
Glu144	Glu148	Glu156	Glu156	Thr157	Glu142
Arg166	Arg170	Ser178	Lys178	Gly179	Arg164
Glu170	Glu174	Arg182	Asp182	Asn183	Val168
Thr173	Thr177	Thr185	Thr185	Thr186	Thr171
Arg174	Arg178	Arg186	Arg186	Arg187	Arg172
Pro175	Pro179	Pro187	Pro187	Pro188	Pro173
Lys185	Lys189	Asn203	Lys197	Asn204	Lys183
Qln233	Qln241	Leu250	Leu244	Leu251	Asn230
<u>Ile236</u>	<u>Val244</u>	<u>Leu253</u>	<u>Val247</u>	<u>Leu254</u>	<u>Phe233</u>
Ala237	Ala245	Gly254	Gly248	Gly255	Gly234
Asp240	Asp248	Asp257	Asp251	Asp258	Asp237
Thr241	Asp249	Thr258	Thr252	Thr259	Thr238
Asn244	Asn252	Asn261	Asn255	Asn262	Ala241
Val284	Val293	Val301	Val295	Val302	Val281
Ile286	Ile294	Glu303	Asp297	Asp304	Val283
Ile384	Ile393	Ile401	Ile395	Ile402	Asn383
Val385	Val394	Val402	Val396	Val403	Val384

Figure S1. The CYP101B1 E. coli whole-cell oxidation system after the addition of indole.

NMR data

¹H-NMR, ¹³C-NMR, COSY and HSQC analysis of 3-hydroxy- β -ionone, *trans*-3-hydroxy- α -ionone, 3-oxo-ionone, *cis*-3-hydroxy- α -ionone, 3-hydroxy- β -damascone and 4-hydroxy- β -damascone.

¹H-NMR and COSY analysis of *trans*-4-phenylcyclohexanol

3-hydroxy- β -ionone ¹H-NMR

3-hydroxy- β -ionone ¹³C-NMR

3-hydroxy-β-ionone COSY

3-hydroxy-β-ionone HSQC

trans-3-hydroxy- α -ionone ¹H-NMR

trans-3-hydroxy-α-ionone ¹³C-NMR

trans-3-hydroxy-α-ionone COSY

trans-3-hydroxy-α-ionone HSQC

3-oxo-α-ionone ¹H-NMR

3-oxo- α -ionone ¹³C-NMR

cis-3-hydroxy-α-ionone ¹H-NMR

cis-3-hydroxy-α-ionone ¹³C-NMR

cis-3-hydroxy-α-ionone COSY

cis-3-hydroxy-α-ionone HSQC

 1 H-NMR for 3-hydroxy- β -damascone

 $^1\text{H-NMR}$ of sp^2 carbons for 3-hydroxy- β -damascone

 1 H-NMR of sp 3 carbons for 3-hydroxy- β -damascone

 13 C NMR for 3-hydroxy- β -damascone

COSY-NMR for 3-hydroxy- β -damascone

HSQC-NMR for 3-hydroxy-β-damascone

¹H-NMR of *trans*-4-phenylcycohexanol

COSY of *trans*-4-phenylcycohexanol