
Cu-MoS₂-ITO based hybrid structures for catalysis of hydrazine oxidation

Sajjad Hussain^{a,b}, Kamran Akbar^c, Dhanasekaran Vikraman^{a,b}, Muhmmad Arslan shehzad^{a,b}, Seung Ho Jung^c, Yongho Seo^{a,b}, and Jongwan Jung*^{a,b}

Figure S1. Raman mapping analysis were performed over an area of 30 μm × 30 μm of 2 nm thikcness MoS_2 film (sputtered for 1 minute). (a) E_{2g}^{-1} mode mapping image is appeared at 382-384 cm⁻¹; (b) A_{1g} mode mapping image is appeared at 404.5 - 406.5 cm⁻¹; (c) The measured frequencies difference (Δk) are in the range of 20 – 22 cm⁻¹.

^a Graphene Research Institute, Sejong University, Seoul 143-747, Republic of Korea

^b Institute of Nano and Advanced Materials Engineering, Sejong University, Seoul 143-747, Republic of Korea

^c Centre for Biotechnology Research in UBITA (CBRU), Dept. of Bioscience and Biotechnology, Konkuk University, Seoul 143-701, Republic of Korea.

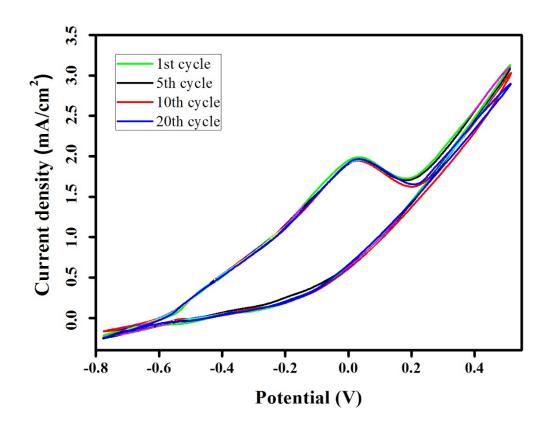
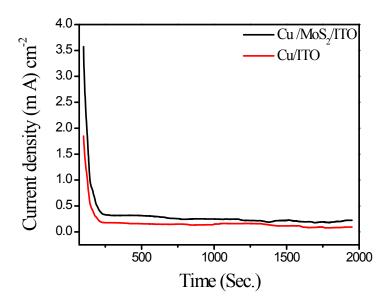



Figure S2. Cyclic voltammetry measurements of the Cu/MoS_2 (2 nm)/ITO hybrid.

Figure S3. Chronoamperometric measurement in 75 mM NaOH with 0.1 mM hydrazine hydrate at -0.4 V (a) Cu/MoS₂/ITO hybrid (Black line); (b) Cu/ITO hybrid (Red line).