Electronic Supplementary Information for

Hydrophobic gold nanostructures via electrochemical deposition for sensitive SERS detection of persistent toxic substances

Lixiao Jing, Yu-e shi, Jingchen Cui, Xiaoli Zhang* and Jinhua Zhan*

Key Laboratory of Colloid and Interface Chemistry, Ministry of Education,

Department of Chemistry, Shandong University, Jinan 250100, China

*Address for correspondence. Email: jhzhan@sdu.edu.cn

Phone: 86-531-88365017; Fax: 86-531-88366208

[Contents]

1. EDS pattern of the as-prepared gold nanostructures.

2. SERS spectra of 10^{-4} M (A) PATP and (B) fluoranthene from (a) bare gold electrode (b) gold nanostructures substrate.

3. SEM images of gold nanostructures.

4. SERS spectra of PATP (10⁻⁴ M) under different potentials.

5. The SERS spectra taken from the SERS substrate with five cycles of adsorption

(10⁻⁴ M fluoranthene solution) and elution (dehydrated ethanol).

6. (A) (a) Raman and (b) SERS spectrum of fluoranthene (B) (a) Raman and (b) SERS spectrum of BDE-15 (C) (a) Raman and (b) SERS spectrum of PCB-15.

7. Chemical structures of analytes in this work.

8. (A) SERS spectra and (B) log–log plot for fluoranthene in simulated water samples at different concentrations.

9. Surface-enhanced Raman bands of fluoranthene, BDE-15, PCB-15.

10. K_{ow} , Peak position for quantitative analysis, linear range, detection limit of fluoranthene, BDE-15 and PCB-15 and enhancement factor.

11. Comparison of the performance of various substrates for SERS detection.

12. The recovery of fluoranthene in spring water.

2

1. EDS pattern of the as-prepared gold nanostructures.

Fig. S1 EDS pattern of the as-prepared gold nanostructures.

2. SERS spectra of 10^{-4} M (A) PATP and (B) fluoranthene from (a) bare gold electrode (b) gold nanostructures substrate.

Fig. S2 SERS spectra of 10^{-4} M (A) PATP and (B) fluoranthene from (a) bare gold electrode (b) gold nanostructures substrate.

3. SEM images of gold nanostructures.

Fig. S3 SEM images of gold nanostructures electrodeposited in the solution of 0.1 M KNO₃ containing 0.4 g L⁻¹ HAuCl₄ for 600s: (A) E = 0.2 V, (B) E = -1.0 V, (c) E = -0.2 V.

4. SERS spectra of PATP (10⁻⁴ M) under different potentials.

Fig. S4 SERS spectra of PATP (10^{-4} M) under different potentials (a) E= 0.2V; (b) E=

-0.2 V; (C) E = -1.0 V; (d) E= -0.6 V.

5. The SERS spectra taken from the SERS substrate with five cycles of adsorption (10⁻⁴ M fluoranthene solution) and elution (dehydrated ethanol).

Fig. S5 The SERS spectra taken from the SERS substrate with five cycles of adsorption (10^{-4} M fluoranthene solution) and elution (dehydrated ethanol). The characteristic peaks of fluoranthene are highlighted by vertical lines. The acquisition time of all the spectra was 1 s.

6. (A) (a) Raman and (b) SERS spectrum of fluoranthene (B) (a) Raman and (b) SERS spectrum of BDE-15 (C) (a) Raman and (b) SERS spectrum of PCB-15.

Fig. S6 (A) (a) Raman and (b) SERS spectrum of fluoranthene. (B) (a) Raman and (b) SERS spectrum of BDE-15. (C) (a) Raman and (b) SERS spectrum of PCB-15. The acquisition time of all the spectra was 1 s.

7. Chemical structures of analytes in this work.

Fig. S7 Chemical structures of analytes in this work.

8. (A) SERS spectra and (B) log–log plot for fluoranthene in simulated water samples at different concentrations.

Fig. S8 (A) SERS spectra and (B) log–log plot for fluoranthene in simulated water samples at different concentrations. The acquisition time of all the spectra was 1 s.

9. Surface-enhanced Raman bands of fluoranthene, BDE-15, PCB-15.

fluoranthene	BDE-15	PCB-15	fluorene
470 skeletal	429 C-H in-plane	543 C-Cl	421 skeletal
stretching	bending	stretching	stretching
559 skeletal	493 C-H in-plane	631 ring torsion	741 C-H out-plane
stretching	bending		bending
669 С-Н	644 C-Br stretching,	772 C–Cl	844 C-H out-plane
stretching	ring torsion	stretching	bending
801 C-H	711 C-H out-plane	1098 trigonal	1020 C-C
stretching	bending, C-H torsion	breathing	stretching
1020 C-C	776 C-H in-plane	1287 С-С	1149 C-H in-plane
stretching	bending	bridge stretching	bending
1104 C-H in-	1068 C-Br	1600 ring	1187 C-C
plane bending	stretching, ring stretching	stretching	stretching
1270 C-H in-	1160 C-O sym.		1234 C-H in-plane
plane bending	stretching, C-H in- plane bending		bending
1410 ring	1196 C-O sym.		1295 C-H in-plane
vibration	stretching, C-H in- plane bending		bending
1420 C-C	1581 C-C stretching		1478 C-C
stretching			stretching
1456 C-C			1575 C-C
stretching			stretching
1610 C-C			1610 C-C
stretching			stretching

 Table S1. Surface-enhanced Raman bands of fluoranthene, BDE-15, PCB-15¹⁻³

10. K_{ow} , Peak position for quantitative analysis, linear range, detection limit of fluoranthene, BDE-15 and PCB-15 and enhancement factor.

Table S2. K_{ow}, Peak Position for Quantitative Analysis, Linear Range, DetectionLimit of Fluoranthene, BDE-15 and PCB-15 and Enhancement Factor

Analyte	Log K _{ow} ^a	Peak (cm ⁻¹)	Linear Range (µM)	LOD (µM)	EF
fluoranthene	5.16	559	0.02 - 200	0.0067	1.5×10 ⁴
BDE-15	5.82	776	0.02 - 200	0.0026	2.6×10 ⁴
PCB-15	5.28	772	0.04 - 440	0.0053	1.2×10 ⁴

^a K_{ow} : n-octanol-water partition coefficients, indicator for hydrophobicity. ^aData from

Mackay et al.⁽⁴⁾

11. Comparison of the performance of various substrates for SERS detection.

Substrate	EF	LOD (nM)	Linear Range (µM)
Au nanoparticles ⁽⁵⁾	^a 3.0 × 10 ⁴	^a 500	^a 0.5 - 10
Silver nanoparticle ⁽⁶⁾	b 2.1× 10 ⁵	^b 24	^b 0.024 - 49
Ag film ⁽⁷⁾	$^{\circ}$ 1.2 \times 10 ⁵	^c 440	-
dendritic Au film ⁽⁸⁾	d 3.63 \times 10 ⁴	^e 7.2	^e 0.0832 - 0.9975
Our substrate	$^{b}1.5 imes 10^{4}$	^b 6.7	^b 0.02 - 200
	$^{\rm f}$ 2.6 $ imes$ 10 ⁵		
^a Pyrene, ^b fluoranthene,	, °4,4-dichlorob	iphenyl, ^d 4-m	ercaptobenzoic acid,

Table S3. Comparison of the performance of various substrates for SERS detection

^eformaldehyde, ^fp-Aminothiophenol

12. The recovery of fluoranthene in spring water.

	T 1			M	1	•	•	
	Tho	ragari	Δt	thioropt	hono	111	anrina	wator
1 2010 34.			C) I	пиогани	пспс		SDELLE	walt
		1000101	· ·				- PB	

Technique	Recovery (%)	RSD (%)
HPLC ⁽⁹⁾	97.9 ^a	3.6 ^a
GC ⁽¹⁰⁾	103 ^b	5.0 ^b
Our method	108.5°	3.8°

^a Tap water, ^b River water, ^c Spring water

REFERENCES

L. L. Qu, Y. T. Li, D. W. Li, J. Q. Xue, J. S. Fossey and Y. T. Long, *Analyst*, 2013, 138, 1523-1528.

(2) S. S. Qiu, X. H. Tan, K. Wu, A. Q. Zhang, S. K. Han and L. S. Wang, Spectrochimica Acta Part A, 2010, 76, 429–434.

(3) Y. C. Lai, W. X. Pan, S. Q. Ni, D.J. Zhang and J. H. Zhan, *Chemosphere*, 2011, 85, 412-417.

(4) D. Mackay, W. Y. Shiu, K. C. Ma and S. C. Lee, *Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals*, 2nd ed; Taylor & Francis, Boca Raton: London, 2006.

(5) J. W. Xu, J. J. Du, C. Y. Jing, Y. L. Zhang and J. L. Cui, ACS Appl. Mater. Interfaces, 2014, 6, 6891-6897.

(6) X. H. Jiang, Y. C. Lai, M. Yang, H. Yang, W. Jiang and J. H. Zhan, *Analyst*, 2012, 137, 3995-4000

(7) J. P. Yuan, Y. C. Lai, J. L. Duan, Q. Q. Zhao and J. H. Zhan, *J. Colloid Interface Sci.*, 2012, **365**, 122-126.

(8) Z.-Y. Lv, L. -P. Mei, W. -Y. Chen, J.-J. Feng, J. -Y. Chen and A. -J. Wang, *Sensors and Actuators B*, 2014, **201**, 92–99.

(9) W. D. Wang, B. Chen and Y. M. Huang, J. Agric. Food Chem., 2014, 62, 8051-8059.

(10) W. C. Tseng, P. S.Chen and S. D. Huang, *Talanta*, 2014, 120, 425-432.