Domino reaction of \mathbf{N}-(cyanomethyl)-1,3-azolium quaternary salts with o-hydroxybenzaldehydes: scope and limitations

L.G. Voskressensky*1, A.A. Festa ${ }^{1}$, O.A. Storozhenko ${ }^{1}$, T.A. Le ${ }^{2}$, V.T. Nguyen ${ }^{3}$, A.V. Varlamov ${ }^{1}$

${ }^{1}$ Organic Chemistry Department, Peoples’ Friendship University of Russia, Miklukho-Maklaya st., 6., 117198, Moscow, Russian Federation.

E-mail: lvoskressensky@sci.pfu.edu.ru
${ }^{2}$ Department of Chemistry, Vietnam National University, 144 Xuan Thuy, Cau Giay, Hanoi, Vietnam.
${ }^{3}$ Institute of Chemistry, Vietnam Academy of Science \& Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam.

Supplementary Information

Experimental section... 2
Cytotoxicity assay.. 8
Copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra.. 9

Experimental Section

Reagents were purchased from commercial sources and were used without any additional purification. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded in CDCl_{3} or DMSO- d_{6} solutions at $25^{\circ} \mathrm{C}$, using a 400 or 600 MHz NMR spectrometer; peak positions are given in parts per million (δ) referenced to the appropriate solvent residual peak. Mass spectra were registered using electron ionisation. MW-assisted reactions were carried out in a Monowave 300 MW reactor from Anton Paar GmbH ; the reaction temperature was monitored by an IR sensor. Standard 10 mL G10 reaction vials, sealed with silicone septa, were used for the MW irradiation experiments. Only ${ }^{1} \mathrm{H}$ NMR spectra are listed for the earlier reported compounds [Eur. J. Org. Chem., 2012, 6124].

General procedure A for the MW-assisted synthesis of thiazolium salts 1a-d

A mixture of the corresponding thiazole (8.5 mmol) and chloroacetonitrile (25.5 mmol) was heated to $140^{\circ} \mathrm{C}$ by the means of MW irradiation, where it was held for 30 min in a closed vessel. After cooling, the reaction mixture was treated with acetonitrile (2 mL) and mixed thoroughly before it was put into the freezer. After 1 h , the precipitate was filtered off, washed with acetonitrile ($3 \times 5 \mathrm{~mL}$) and dried in vacuo to give thiazolium salts 1a-d.

3-(Cyanomethyl)-1,3-thiazol-3-ium chloride (1a). Brown solid. Yield 81%. ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}, $400 \mathrm{MHz}) \delta: 6.16(\mathrm{~s}, 2 \mathrm{H}), 8.46(\mathrm{dd}, J=3.7,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.80(\mathrm{dd}, J=3.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 10.66$ (dd, $J=2.3,1.4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (DMSO- $\left.d_{6}, 100 \mathrm{MHz}\right) \delta: 42.2,114.8,128.4,137.4,163.1$.

3-(Cyanomethyl)-4-methyl-1,3-thiazol-3-ium chloride (1b). Brown solid. Yield 79\%. ${ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6}, 400 \mathrm{MHz}\right) \delta: 2.62(\mathrm{~s}, 3 \mathrm{H}), 6.09(\mathrm{~s}, 2 \mathrm{H}), 8.13(\mathrm{~d}, J=2,5 \mathrm{~Hz}, 1 \mathrm{H}), 10.46(\mathrm{~d}, J=2.5$ $\mathrm{Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (DMSO- $\left.d_{6}, 100 \mathrm{MHz}\right) \delta: 13.3,40.5,114.2,123.6,146.1,162.8$.

3-(Cyanomethyl)-4,5-dimethyl-1,3-thiazol-3-ium chloride (1c). Brown solid. Yield $82 \%{ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6}, 400 \mathrm{MHz}\right) \delta: 2.51(\mathrm{bs}, 6 \mathrm{H}), 6.09(\mathrm{~s}, 2 \mathrm{H}), 10.35(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (DMSO- d_{6}, $100 \mathrm{MHz}) \delta: 11.6,12.5,40.9,114.4,134.5,141.9,159.4$.

3-(Cyanomethyl)-5-methyl-1,3-thiazol-3-ium chloride (1d). Brown solid. Yield 81\%. ${ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6}, 400 \mathrm{MHz}\right) \delta: 2.58(\mathrm{~s}, 3 \mathrm{H}), 5.84(\mathrm{~s}, 2 \mathrm{H}), 8.45(\mathrm{~s}, 1 \mathrm{H}), 10.17(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (DMSO- $\left.d_{6}, 100 \mathrm{MHz}\right) \delta: 12.9,42.4,114.6,134.3,141.1,161.1$.

Synthesis of 3-(cyanomethyl)-1-methylimidazolium chloride (2)

Chloroacetonitrile ($5.1 \mathrm{~mL}, 79 \mathrm{mmol}$) was added to a stirred solution of 1-methylimidazole (5.0 $\mathrm{g}, 61 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(10 \mathrm{~mL})$. The reaction mixture was heated to $50^{\circ} \mathrm{C}$ and, after 1 h , the precipitate was filtered off, washed with $\mathrm{CH}_{3} \mathrm{CN}(3 \times 20 \mathrm{~mL})$ and dried in vacuo to give 7.5 g (78\%) of salt 2 as a white solid. Mp $180^{\circ} \mathrm{C}$ (decomp.). ${ }^{1} \mathrm{H}$ NMR (DMSO- $d_{6}, 400 \mathrm{MHz}$) $\delta: 3.92$ (s, $3 \mathrm{H}), 5.85(\mathrm{~s}, 2 \mathrm{H}), 7.86-7.89(\mathrm{~m}, 1 \mathrm{H}), 7.99-8.03(\mathrm{~m}, 1 \mathrm{H}), 9.60(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (DMSO- d_{6}, $100 \mathrm{MHz}) \delta: 36.7,37.3,115.4,123.1,124.9,138.4$; Anal Calcd for $\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{ClN}_{3}(\%): \mathrm{C} 45.73, \mathrm{H}$ 5.12, N 26.66. Found (\%): C 45.87, H 5.16, N 26.79.

General procedure B for the preparation of 3a, 3b, 3d-i and 3o

To a stirred solution of thiazolium salt $(1.1 \mathrm{mmol})$ and an aldehyde $(1 \mathrm{mmol})$ in a mixture of methanol $(M \mathrm{~mL})$ and water $(W \mathrm{~mL})$, DBU $(1.1 \mathrm{mmol})$ was added. The reaction mixture was stirred for $18 \mathrm{~h}(12 \mathrm{~h}$ in the case of $\mathbf{3 i})$ at room temperature. The formed precipitate was filtered off, washed with water $(3 \times)$ and with cold methanol $(1 \times)$ to give the target $10 b \mathrm{H}-6$-oxa-1-thia$3 a, 5$-diazaacephenanthrylenes $\mathbf{3 a}, \mathbf{3 b}, \mathbf{3 d}-\mathbf{i}$ and $\mathbf{3 o}$.

3-Methyl-10bH-6-oxa-1-thia-3a,5-diazaacephenanthrylene (3a) $M=3 \mathrm{~mL}, W=1 \mathrm{~mL}$. Yield 62%. Brown solid. Mp $132^{\circ} \mathrm{C}$ (decomp.). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta: 2.28(\mathrm{~s}, 3 \mathrm{H}), 5.61(\mathrm{~d}, J$ $=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.79(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.07-7.11(\mathrm{~m}, 1 \mathrm{H}), 7.14-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.29(\mathrm{t}, J=6.2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.38(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta: 17.8,32.5,101.4,105.7$, $118.7,119.3,125.0,129.9,130.1,130.2,130.9,144.6,151.9 . m / z(\%)=243(22), 242(100)$ $[\mathrm{M}]^{+}, 241$ (14), 171 (36), 143 (38), 122 (29), 121 (55), 115 (10), 101 (15), 100 (14), 99 (13), 91 (15), 64 (11), 59 (27), 57 (13), 45 (34), 43 (41), 39 (17). Anal Calcd for $\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{OS}$ (\%): C 64.44, H 4.16, N 11.56. Found (\%): C 64.61, H 4.22, N 11.47.

2,3-Dimethyl-10bH-6-oxa-1-thia-3a,5-diazaacephenanthrylene (3b). $M=1 \mathrm{~mL}, W=1 \mathrm{~mL}$. Yield 61%. Light-brown solid. Mp $165^{\circ} \mathrm{C}$ (decomp.). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta: 2.04$ (s, $3 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}), 5.81(\mathrm{~s}, 1 \mathrm{H}), 7.13(\mathrm{t}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-7.36(\mathrm{~m}$, $2 \mathrm{H}), 7.38(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta: 14.3,19.2,33.1,101.9,116.7,118.5,118.6$, 124.0, 124.2, 127.9, 129.2, 129.4, 144.4, 152.2. $\mathrm{m} / \mathrm{z}(\%)=257(12), 256\left(100,[\mathrm{M}]^{+}\right), 255(29)$, 171 (61), 143 (15), 113 (60), 89 (14), 86 (86), 75 (14), 71 (41), 59 (24), 58 (16), 53 (14), 46 (22), 44 (16), 43 (16). Anal Calcd for $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{OS}$ (\%): C 65.60, H 4.72, N 10.93. Found (\%): C 65.46, H 4.53, N 10.86 .

9-Bromo-3-methyl-10bH-6-oxa-1-thia-3a,5-diazaacephenanthrylene (3d). $M=3 \mathrm{~mL}, W=1 \mathrm{~mL}$. Yield 61%. Light-grey solid. ${ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6}, 400 \mathrm{MHz}\right) \delta: 2.34(\mathrm{~s}, 3 \mathrm{H}), 5.96-6.01(\mathrm{~m}, 2 \mathrm{H})$, $7.27(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{dd}, J=8.9,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.93(\mathrm{~s}, 1 \mathrm{H})$.

9-Bromo-2,3-dimethyl-10bH-6-oxa-1-thia-3a,5-diazaacephenanthrylene (3e). $M=3 \mathrm{~mL}, W=1$ mL . Yield 61%. Light-grey solid. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta: 2.04(\mathrm{~s}, 3 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}), 5.78$ (s, 1H), 7.10 (d, $J=8.8 \mathrm{~Hz}, 1 \mathrm{H}$), 7.36 (s, 1H), $7.40(\mathrm{dd}, J=8.8,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{~d}, J=2.3 \mathrm{~Hz}$, $1 \mathrm{H})$.

9-Bromo-2-methyl-10bH-6-oxa-1-thia-3a,5-diazaacephenanthrylene (3f). $M=3 \mathrm{~mL}, W=1 \mathrm{~mL}$. Yield 46%. Brown solid. Mp $186^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta: 2.07(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 3 \mathrm{H})$, $5.88(\mathrm{~s}, 1 \mathrm{H}), 6.99(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{~s}, 1 \mathrm{H}), 7.43(\mathrm{dd}, J=8.9$, $2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta: 20.8,33.2,99.7,116.4$, $116.5,120.5,120.7,124.1,129.5,131.8,132.5,144.9,151.5 . m / z(\%)=322(99), 321$ (14), 320 (100, [M] ${ }^{+}$), 251 (11), 249 (12), 223 (31), 221 (36), 202 (32), 201 (10), 200 (36), 199 (20), 100 (20), 99 (33), 91 (10), 73 (11), 72 (40), 71 (14), 63 (27), 59 (19), 58 (11), 46 (11), 45 (20). 43 (29), 42 (16). Anal Calcd for $\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{BrN}_{2} \mathrm{OS}$ (\%): C 48.61, H 2.82, N 8.72. Found (\%): C 48.67, H 2.91, N 8.60 .

3-Methyl-9-nitro-10bH-6-oxa-1-thia-3a,5-diazaacephenanthrylene (3g). $M=4.5 \mathrm{~mL}, W=0.6$ mL . Yield 81%. ${ }^{1} \mathrm{H}$ NMR (DMSO- $d_{6}, 400 \mathrm{MHz}$) $\delta: 2.35(\mathrm{~s}, 3 \mathrm{H}), 6.01(\mathrm{~s}, 1 \mathrm{H}), 6.11(\mathrm{~s}, 1 \mathrm{H}), 7.53$ (d, $J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.97(\mathrm{~s}, 1 \mathrm{H}), 8.18(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.26(\mathrm{dd}, J=9.2,2.6 \mathrm{~Hz}, 1 \mathrm{H})$.

2,3-Dimethyl-9-nitro-10bH-6-oxa-1-thia-3a,5-diazaacephenanthrylene (3h). $M=4.5 \mathrm{~mL}, W=$ 0.6 mL . Yield 76%. Brown solid. ${ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6}, 400 \mathrm{MHz}\right) \delta: 2.04(\mathrm{~s}, 3 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H})$, $6.13(\mathrm{~s}, 1 \mathrm{H}), 7.53(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.92(\mathrm{~s}, 1 \mathrm{H}), 8.20(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.27(\mathrm{dd}, J=9.2$, $2.7 \mathrm{~Hz}, 1 \mathrm{H})$.

2-Methyl-9-nitro-10bH-6-oxa-1-thia-3a,5-diazaacephenanthrylene (3i). $M=3 \mathrm{~mL}, W=1 \mathrm{~mL}$. Yield 34%. Yellow solid. Mp $209^{\circ} \mathrm{C}$ (decomp.). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta: 1.99$ (d, $J=1.4$ $\mathrm{Hz}, 3 \mathrm{H}), 5.90(\mathrm{~s}, 1 \mathrm{H}), 6.97(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.32$, (s, 1H), 8.12 (dd, J $=9.6,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.20(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}+\mathrm{DMSO}-d_{6}, 100 \mathrm{MHz}\right) \delta: 20.3$, $32.5,99.2,108.6,116.9,119.2,119.8,123.1,124.7,125.0,130.0,131.6,147.8 . m / z(\%)=288$ (18), 287 (100, [M] ${ }^{+}$), 242 (19), 240 (20), 231 (11), 173 (10), 170 (11), 143 (11), 120 (13), 102 (10), 100 (19), 99 (99), 92 (11), 91 (11), 77 (21), 76 (19), 75 (20), 74 (16), 72 (78), 71 (54), 65 (14), 64 (75), 61 (16), 60 (15), 59 (25), 57 (20), 55 (21), 59 (25), 58 (18), 57 (20), 55 (21), 53 (10), 51 (17), 50 (12), 43 (78). Anal Calcd for $\mathrm{FC}_{13} \mathrm{H}_{9} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}$ (\%): C 54.35, H 3.16, N 14.63. Found (\%): C 54.20, H 3.07, N 14.68.

2,3-Dimethyl-7-methoxy-9-nitro-10bH-6-oxa-1-thia-3a,5-diazaacephenanthrylene (30). $M=3.5$ $\mathrm{mL}, W=2.5 \mathrm{~mL}$. Yield 43%. Yellow solid. Mp $203^{\circ} \mathrm{C}$ (decomp.). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}+\mathrm{DMSO}^{2} d_{6}\right.$,
$400 \mathrm{MHz}) \delta: 1.98(\mathrm{~s}, 3 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}), 3.95(\mathrm{~s}, 3 \mathrm{H}), 5.87(\mathrm{~s}, 1 \mathrm{H}), 7.49(\mathrm{~s}, 1 \mathrm{H}), 7.70(\mathrm{~d}, J=2.3$ $\mathrm{Hz}, 1 \mathrm{H}), 7.77(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}+\mathrm{DMSO}-d_{6}, 100 \mathrm{MHz}\right) \delta: 14.5,19.4,33.1$, $56.8,101.8,106.8,115.3,116.5,116.7,119.9,125.2,129.2,143.4,147.2,149.6$. IR (KBr): 1340, $1523 \mathrm{~cm}^{-1}\left(\mathrm{NO}_{2}\right) . m / z(\%)=331(100), 330(12), 286(16), 285(13), 223$ (18), 201 (14), 200 (18), 173 (17), 128 (15), 100 (15), 99 (33), 85 (82), 71 (49), 63 (10), 59 (33), 58 (16), 57 (21), 53 (10), 51 (14), 46 (32), 45 (55), 43 (74). Anal Calcd for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}$ (\%): C 54.37, H 3.95, N 12.68. Found (\%): C 54.04, H 3.79, N 12.48.

General procedure C for the synthesis of compounds $\mathbf{3 c}$, 31-n

To a stirred solution of thiazolium salt (1.1 mmol) and aldehyde (1 mmol) in a mixture of methanol ($M \mathrm{~mL}$) and water $(W \mathrm{~mL}), \mathrm{K}_{2} \mathrm{CO}_{3}(1.1 \mathrm{mmol})$ was added. The reaction mixture was heated to $40^{\circ} \mathrm{C}$ and stirred for 1 h . The formed precipitate was filtered off, washed with water $(3 \times 10 \mathrm{~mL})$ and with cold methanol $(1 \times 3 \mathrm{~mL})$ to give the target $10 b \mathrm{H}-6$-oxa-1-thia- $3 a, 5$ diazaacephenanthrylenes 3c, 31-n.

2-Methyl-10bH-6-oxa-1-thia-3a,5-diazaacephenanthrylene (3c). $M=1 \mathrm{~mL}, W=1 \mathrm{~mL}$. Yield 34%. Light-brown solid. $\mathrm{Mp} 141^{\circ} \mathrm{C}$ (decomp.). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta: 2.00(\mathrm{~d}, J=1.4$ $\mathrm{Hz}, 3 \mathrm{H}), 5.86(\mathrm{~s}, 1 \mathrm{H}), 6.92(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{td}, J=8.0,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{dd}, J=8.0$, $1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{~s}, 1 \mathrm{H}), 7.27-7-31(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta: 20.8,33.5,100.0$, $116.4,118.7,118.8,124.1,124.2,129.1,129.2,129.5,145.0,152.3 . m / z(\%)=243(17), 242(85$, [M] ${ }^{+}$), 241 (66), 209 (29), 172 (11), 171 (46), 143 (100), 101 (14), 99 (46), 89 (19), 75 (12), 72 (52), 71 (39), 58 (40), 45 (14), 43 (58), 42 (22). . Anal Calcd for $\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{OS}$ (\%): C 64.44, H 4.16, N 11.56. Found (\%): C 64.56, H 4.25, N, 11.41.

9-Methoxy-3-methyl-10bH-6-oxa-1-thia-3a,5-diazaacephenanthrylene (31). $M=2 \mathrm{~mL}, W=3$ mL . Yield 54%. Orange solid. Mp $135^{\circ} \mathrm{C}$ (decomp.). ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}+$ DMSO- $\left.d_{6}, 400 \mathrm{MHz}\right) \delta$: $2.47(\mathrm{~m}, 3 \mathrm{H}), 3.93(\mathrm{~m}, 3 \mathrm{H}), 5.80-5.87(\mathrm{~m}, 1 \mathrm{H}), 5.94-5.99(\mathrm{~m}, 1 \mathrm{H}), 6.94-7.00(\mathrm{~m}, 1 \mathrm{H}), 7.01-$ $7.06(\mathrm{~m}, 1 \mathrm{H}), 7.27-7.32(\mathrm{~m}, 1 \mathrm{H}), 7.60-7.66(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}+\mathrm{DMSO}-d_{6}, 100 \mathrm{MHz}\right) \delta$: $17.8,33.0,55.6,100.0,105.8,112.9,113.0,115.6,119.0,119.2,128.2,129.9,145.9,155.9 . \mathrm{m} / \mathrm{z}$ $(\%)=273(20), 272\left(100,[M]^{+}\right), 271(34), 242(28), 241(38), 201(24), 200(13), 173(44), 171$ (38), 158 (15), 143 (37), 136 (12), 115 (12), 100 (19), 99 (18), 89 (12), 75 (13), 71 (30), 43 (12), 42 (12). Anal Calcd for $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$ (\%): C 61.75, H 4.44, N 10.29. Found (\%): C 61.85, H 4.65, N 10.17.

2,3-Dimethyl-9-methoxy-10bH-6-oxa-1-thia-3a,5-diazaacephenanthrylene (3m). $M=2 \mathrm{~mL}, W=$ 3 mL . Yield 72%. Beige solid. Mp $166-167^{\circ} \mathrm{C}$ (decomp.). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta: 2.05$
(s, 3H), $2.32(\mathrm{~s}, 3 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 5.80(\mathrm{~s}, 1 \mathrm{H}), 6.84(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{dd}, J=9.0,3.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.17(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta: 14.4,19.4,33.7$, $55.8,101.6,113.0,115.9,116.5,119.0,119.6,128.0,145.0,146.3,156.0 . m / z(\%)=287(20)$, 286 (100, [M] ${ }^{+}$), 285 (58), 271 (18), 253 (26), 201 (42), 173 (77), 158 (11), 143 (30), 114 (14), 113 (21), 102 (12), 85 (87), 84 (20), 71 (41), 62 (11), 59 (14), 45 (26), 44 (12), 43 (33), 42 (23). Anal Calcd for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$ (\%): C 62.92, H 4.93, N 9.78. Found (\%): C 63.06, H 5.05, N, 9.69.

9-Methoxy-2-methyl-10bH-6-oxa-1-thia-3a,5-diazaacephenanthrylene (3n). $M=2 \mathrm{~mL}, W=3$ mL . Yield 58%. Brown solid. Mp $145^{\circ} \mathrm{C}$ (decomp.). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta: 2.07(\mathrm{~s}, 3 \mathrm{H})$, $3.81(\mathrm{~s}, 3 \mathrm{H}), 5.89(\mathrm{~s}, 1 \mathrm{H}), 6.84(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{dd}, J=9.2,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{~s}, 1 \mathrm{H})$, $7.18(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta: 20.9,33.9,55.8,99.6$, $100.0,112.9,115.8,116.4,119.1,119.6,123.9,129.2,146.3,156.0 . m / z(\%)=274(10), 273$ (11), 272, (100, [M] $]^{+}$, 271 (30), 201 (38), 174 (20), 173 (95), 158 (11), 152 (22), 137 (12), 100 (11), 75 (12), 72 (22), 71 (25), 58 (22), 46 (18), 43 (51). Anal Calcd for $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$ (\%): C 61.75, H 4.44, N 10.29. Found (\%): C 61.61, H 4.33, N 10.11.

General procedure D for the synthesis of compounds $\mathbf{3 j}$ and $\mathbf{3 k}$

To a stirred solution of thiazolium salt (1.1 mmol) and 2-hydroxynaphtaldehyde (1 mmol) in a mixture of methanol (2 mL) and water $(1 \mathrm{~mL}), \mathrm{K}_{2} \mathrm{CO}_{3}(0.2 \mathrm{mmol})$ was added. The reaction mixture was heated at reflux for 45 min . The formed precipitate was filtered off after cooling to room temperature and washed with water $(3 \times 10 \mathrm{~mL})$ and with cold methanol $(1 \times 3 \mathrm{~mL})$ to give the target 12 cH -6-oxa-1-thia-3a,5-diazabenzo[l] acephenanthrylenes $\mathbf{3 j}$ and $\mathbf{3 k}$.

2,3-Dimethyl-12cH-6-oxa-1-thia-3a,5-diazabenzo[l]acephenanthrylene (3j). Beige solid. Yield 30%. Mp $179^{\circ} \mathrm{C}$ (decomp.). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta: 2.11(\mathrm{~s}, 3 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 6.27(\mathrm{~s}$, $3 \mathrm{H}), 7.40(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{~s}, 1 \mathrm{H}), 7.50(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.85$ $(\mathrm{d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.87(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.50(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 100\right.$ $\mathrm{MHz}) \delta: 14.6,19.6,34.1,103.1,110.9,118.6,119.3,124.0,124.5,125.1,127.0,128.5,128.6$, 130.6, 130.7, 132.8, 144.1, 150.8. m/z (\%) = $307(25), 306\left(100,[M]^{+}\right), 279(36), 273(30), 221$ (51), 220 (27), 194 (15), 193 (69), 164 (14), 153 (16), 139 (17), 85 (20), 84 (11), 43 (11). Anal Calcd for $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{OS}$ (\%): C 70.56, H 4.61, N 9.14. Found (\%): C 70.46, H 4.52, N 9.25.

2-Methyl-12cH-6-oxa-1-thia-3a,5-diazabenzo[l]-acephenanthrylene (3k). Light-yellow solid. Yield 37%. Mp 207-208 ${ }^{\circ} \mathrm{C}$ (decomp.). ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta: 2.12(\mathrm{~s}, 3 \mathrm{H}), 6.35(\mathrm{~s}, 1 \mathrm{H})$, $7.07(\mathrm{~s}, 1 \mathrm{H}), 7.40(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{~s}, 1 \mathrm{H}), 7.51(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{t}, J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.85(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.87(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.50(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR
$\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta: 21.1,34.5,101.1,110.9,116.6,119.3$ (2C), 123.9 (2C), 125.2, 126.0, 128.7, 129.7, 130.7, 132.7, 144.5, 150.8. $m / z(\%)=293(10), 292\left(100,[M]^{+}\right), 291(13), 259$ (31), 244 (10), 243 (23), 242 (13), 221 (11), 210 (13), 194 (13), 193 (44), 172 (16), 171 (14), 139 (14), 100 (13), 99 (24), 72 (23), 71 (16), 59 (31), 57 (14), 46 (33), 45 (33), 44 (10), 43 (28). Anal Calcd of $\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{OS}$ (\%): C 69.84, H 4.14, N 9.58. Found (\%): C 69.73, H 4.00, N 9.40.

General procedure for the synthesis of compounds 4

To a stirred solution of imidazolium salt $2(3.2 \mathrm{mmol})$ and salicylic aldehyde (2.9 mmol) in a mixture of methanol (4 mL) and water (1 mL), solid $\mathrm{K}_{2} \mathrm{CO}_{3}(0.63 \mathrm{mmol})$ was added under reflux. The reaction mixture was heated at reflux for 2 h . After cooling to r.t., picric acid (3.8 mmol) was added to the solution. The formed precipitate was filtered off and washed with acetone $(3 \times)$ to give compounds 4.

1-Methyl-3-(2-oxo-2H-chromene-3-yl)-1H-imidazoliumpicrate (4a). Yield 48\%. Yellow crystals. Mp $186^{\circ} \mathrm{C}$ (decomp.). ${ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6}, 400 \mathrm{MHz}\right) \delta: 4.04$ (s, 3 H), $7.54(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}$), $7.63(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.79-7.85(\mathrm{~m}, 1 \mathrm{H}), 7.87-7.92(\mathrm{~m}, 1 \mathrm{H}), 7.98-8.01(\mathrm{~m}, 1 \mathrm{H}), 8.16-8.19$ $(\mathrm{m}, 1 \mathrm{H}), 8.61(\mathrm{~s}, 2 \mathrm{H}), 8.70(\mathrm{~s}, 1 \mathrm{H}), 9.71(\mathrm{bs}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (DMSO- $\left.d_{6}, 100 \mathrm{MHz}\right) \delta: 36.2$, $116.4,117.6,121.6,122.5,123.7,124.2,125.1$ (2C), 125.5, 129.4, 133.5, 137.3, 137.5, 141.8, 152.4 (2C), 156.1, 160.8. Anal Calcd for $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{~N}_{2} \mathrm{O}_{2} \cdot \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{~N}_{3} \mathrm{O}_{7}(\%): \mathrm{C} 50.12$, H 2.88, N 15.38. Found (\%): C 50.34, H 3.01, N 15.53.

1-Methyl-3-(6-nitro-2-oxo-2H-chromene-3-yl)-1H-imidazolium picrate (4b). Yield 42\%. Yellow crystals. Mp $175^{\circ} \mathrm{C}$ (decomp.). ${ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6}, 400 \mathrm{MHz}\right) \delta: 3.99$ (s, 3H), 7.79 (d, $J=9.2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.95-7.96(\mathrm{~m}, 1 \mathrm{H}), 8.06(\mathrm{~s}, 1 \mathrm{H}), 8.49-8.55(\mathrm{~m}, 3 \mathrm{H}), 8.68(\mathrm{~s}, 1 \mathrm{H}), 8.76(\mathrm{~d}, J=2.3 \mathrm{~Hz}$, $1 \mathrm{H}), 9.63(\mathrm{bs}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (DMSO- $\left.d_{6}, 100 \mathrm{MHz}\right) \delta: 37.0,106.9,118.7,118.8,123.0$ (2C), 124.2, 124.7, 125.6, 125.8 (2C), 128.4, 136.2, 136.4, 138.1, 142.3, 144.7, 156.0, 156.4. Anal Calcd for $\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{~N}_{3} \mathrm{O}_{4} \cdot \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{~N}_{3} \mathrm{O}_{7}$ (\%): C 45.61, H 2.42, N 16.80. Found (\%): C 45.50, H 2.31, N 16.69.

Cytotoxicity assay

Four human cancer cell lines was obtained from the American Type Culture Collection (Manassas, VA) ATCC as MCF7 (breast carcinoma cell line), KB (epidermoid carcinoma cell line), LU (lung cancer cell line), HEPG2 (hepatoma carcinoma cell line). They were grown in medium RPMI 1640 supplemented with 10% FBS (Fetal bovine serum), $50 \mathrm{IU} / \mathrm{ml}$ penicillin and $50 \mu \mathrm{~g} / \mathrm{ml}$ streptomycin. All the cell lines were maintained at $37{ }^{\circ} \mathrm{C}$ in a $5 \% \mathrm{CO}_{2}$ atmosphere with 95\% humidity.

The MTT assay is based on the protocol described for the first time by Mossmann (1983). The test synthetic compounds, dissolved in five concentrations, were added into triplicated available culture cells and culture plates were incubated for 3 days. After the exposure times, the culture cells were treated with MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] and measured OD at 450 nm absorbance on microplate reader (TECAN GENIOUS). IC_{50} is the concentration required for 50% inhibition of cell growth as compared to that of untreated control.

Comp.	Cell line ($\boldsymbol{\mu g} / \mathbf{m L}$)				Conclusion
	KB	HepG2	Lu	MCF7	
Ellipticin	$\mathbf{0 . 2 5}$	$\mathbf{0 . 2 9}$	$\mathbf{1 . 1 8}$	$\mathbf{0 . 7 1}$	Positive
	>128	>128	>128	>128	Negative
3e					
3b	$\mathbf{6 8 . 0}$	$\mathbf{1 1 7 . 5}$	>128	>128	Positive with KB, HepG2
3l	$\mathbf{4}$	$\mathbf{8 0}$	>128	>128	Positive with KB, HepG2
3m	$\mathbf{6 . 3 2}$	>128	$\mathbf{9 9 . 7 6}$	>128	Positive with KB, Lu

てが8てし
＇$\angle \varepsilon$

\qquad

