Electronic Supplementary Material (ESI) for RSC Advances.
This journal is © The Royal Society of Chemistry 2014

Supporting Information

for

Facile Imidazole Mediated Microwave-Assisted Aromatization Reaction: Synthesis of Benzobicyclo[2.2.2]octadienone Derivatives

General procedure for the preparation of MOB dimers 3a-3k: To a solution of 2-methoxyphenol ($\mathbf{1}, 1.0 \mathrm{mmol}$) in methanol (4 mL) was added DAIB (1.3 mmol) and the resulting mixture was stirred for $1 \mathrm{~h}-8 \mathrm{~h}$ at room temperature. The reaction mixture was concentrated and the residue was purified by column chromatography on silica gel by using a mixture of ethyl acetate and hexanes as eluent to obtain corresponding MOB dimers $\mathbf{3}$.

Dimers 3a, 3c, 3d: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data were identical to those reported in literature. Lai, C.-H.; Shen, Y.-L.; Wang, M.-N.; Rao, N. S. K.; Liao, C.C. J. Org. Chem. 2002, 67, 6493-6502.

Dimer 3b: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data were identical to those reported in literature. Deffieux, D.; Fabre, I.; Titz, A.; Leger, J-M.; Quideau, S. J. Org. Chem. 2004, 69 8731-8738.

Dimer 3g: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data were identical to those reported in literature. Nishiyama, A.; Eto, H.; Terada, Y.; Iguchi, M.; Yamamura, S. Chem. Pharm. Bull. 1983, 31, 2834-2844.

3e: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.21-6.12(\mathrm{~m}, 2 \mathrm{H}), 5.53(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.43(\mathrm{~s}, 3 \mathrm{H}), 3.36(\mathrm{~s}, 3 \mathrm{H}), 3.23-3.18(\mathrm{~m}, 1 \mathrm{H}), 3.17(\mathrm{~s}, 3 \mathrm{H}), 3.13-3.06(\mathrm{~m}$, $1 \mathrm{H}), 3.04-3.02(\mathrm{~m}, 1 \mathrm{H}), 3.02(\mathrm{~s}, 3 \mathrm{H}), 2.31-2.15(\mathrm{~m}, 2 \mathrm{H}), 1.94-1.83(\mathrm{~m}, 1 \mathrm{H}), 1.74-1.63(\mathrm{~m}, 1 \mathrm{H}), 1.08-0.98(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 203.8$ (C), $194.7(\mathrm{C}), 142.7(\mathrm{C}), 137.5(\mathrm{CH}), 133.0(\mathrm{CH}), 131.3(\mathrm{CH}), 98.8(\mathrm{C}), 94.9(\mathrm{C}), 58.0(\mathrm{C}), 50.4\left(\mathrm{CH}_{3}\right), 50.1\left(\mathrm{CH}_{3}\right), 49.6\left(\mathrm{CH}_{3}\right), 48.8\left(\mathrm{CH}_{3}\right), 40.4(\mathrm{CH}), 39.7$ (CH), $39.4(\mathrm{CH}), 23.0\left(\mathrm{CH}_{2}\right), 22.3\left(\mathrm{CH}_{2}\right), 12.7\left(\mathrm{CH}_{3}\right)$, $9.1\left(\mathrm{CH}_{3}\right)$. MS (ESI): m / z found $\mathrm{C}_{20} \mathrm{H}_{29} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]^{+} 365$.

3f: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.82(\mathrm{~s}, 1 \mathrm{H}), 5.74(\mathrm{app} \mathrm{dd}, J=6.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.36(\mathrm{~s}, 3 \mathrm{H}), 3.33(\mathrm{~s}, 3 \mathrm{H}), 3.18(\mathrm{~s}, 3 \mathrm{H}), 3.17-3.14(\mathrm{~m}, 1 \mathrm{H}), 3.11-3.05(\mathrm{~m}$, $2 \mathrm{H}), 2.99(\mathrm{dd}, J=6.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.97(\mathrm{~s}, 3 \mathrm{H}), 2.29-2.07(\mathrm{~m}, 2 \mathrm{H}), 1.88-1.68(\mathrm{~m}, 2 \mathrm{H}), 1.04(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.84(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 202.3(\mathrm{C}), 193.3(\mathrm{C}), 161.4(\mathrm{C}), 142.5(\mathrm{C}), 123.7(\mathrm{CH}), 123.0(\mathrm{CH}), 98.7(\mathrm{C}), 94.7(\mathrm{C}), 57.1(\mathrm{CH}), 50.4\left(\mathrm{CH}_{3}\right), 49.8\left(\mathrm{CH}_{3}\right), 49.4\left(\mathrm{CH}_{3}\right)$, 48.8 $\left(\mathrm{CH}_{3}\right), 41.7(\mathrm{CH}), 39.4(\mathrm{CH}), 38.5(\mathrm{CH}), 28.0\left(\mathrm{CH}_{2}\right), 27.8\left(\mathrm{CH}_{2}\right), 11.6\left(\mathrm{CH}_{3}\right), 10.4\left(\mathrm{CH}_{3}\right)$.

3h: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.85(\mathrm{~d}, J=0.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.78(\mathrm{dd}, J=6.9,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.40(\mathrm{~s}, 3 \mathrm{H}), 3.34(\mathrm{~s}, 3 \mathrm{H}), 3.21(\mathrm{~s}, 3 \mathrm{H}), 3.23-3.18(\mathrm{~m}, 1 \mathrm{H}), 3.16-$ $3.09(\mathrm{~m}, 2 \mathrm{H}), 3.01(\mathrm{~s}, 3 \mathrm{H}), 3.03-2.98(\mathrm{~m}, 1 \mathrm{H}), 2.24-2.05(\mathrm{~m}, 2 \mathrm{H}), 1.83-1.76(\mathrm{~m}, 2 \mathrm{H}), 1.62-1.18(\mathrm{~m}, 4 \mathrm{H}), 0.92(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.79(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13}{ }^{3}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 202.6(\mathrm{C}), 193.3(\mathrm{C}), 160.1(\mathrm{C}), 141.2(\mathrm{C}), 125.1(\mathrm{CH}), 124.1(\mathrm{CH}), 98.8(\mathrm{C}), 94.9(\mathrm{C}), 77.2(\mathrm{C}), 56.9(\mathrm{CH}), 50.5\left(\mathrm{CH}_{3}\right), 49.9$ $\left(\mathrm{CH}_{3}\right), 49.5\left(\mathrm{CH}_{3}\right), 48.8\left(\mathrm{CH}_{3}\right), 41.6(\mathrm{CH}), 39.6(\mathrm{CH}), 38.4(\mathrm{CH}), 37.2\left(\mathrm{CH}_{2}\right), 36.9\left(\mathrm{CH}_{2}\right), 20.9\left(\mathrm{CH}_{2}\right), 19.5\left(\mathrm{CH}_{2}\right), 13.4\left(\mathrm{CH}_{3}\right), 13.3\left(\mathrm{CH}_{3}\right)$.

3i: ${ }^{1}$ H NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $87.35(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.18(\mathrm{app} \mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.99(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.24(\mathrm{~s}, 1 \mathrm{H}), 4.99(\mathrm{~s}, 1 \mathrm{H}), 3.79-3.66(\mathrm{~m}$, $3 \mathrm{H}), 3.65-3.54(\mathrm{~m}, 3 \mathrm{H}), 3.53-3.48(\mathrm{~m}, 2 \mathrm{H}), 3.47-3.41(\mathrm{~m}, 1 \mathrm{H}), 3.46(\mathrm{~s}, 3 \mathrm{H}), 3.36(\mathrm{~s}, 3 \mathrm{H}), 3.25(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.17(\mathrm{~s}, 3 \mathrm{H}), 3.08(\mathrm{~s}, 3 \mathrm{H}), 3.07-3.03(\mathrm{~m}$, $1 \mathrm{H}), 1.28(\mathrm{~s}, 3 \mathrm{H}), 1.17(\mathrm{~s}, 3 \mathrm{H}), 0.75(\mathrm{~s}, 3 \mathrm{H}), 0.71(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 201.2(\mathrm{C}), 193.0(\mathrm{C}), 144.2(\mathrm{CH}), 136.9(\mathrm{C}), 130.3(\mathrm{CH}), 129.8$ $(\mathrm{CH}), 99.5(\mathrm{CH}), 98.6(\mathrm{C}), 95.9(\mathrm{CH}), 94.9(\mathrm{C}), 78.3\left(\mathrm{CH}_{2}\right), 77.59\left(\mathrm{CH}_{2}\right), 77.56\left(\mathrm{CH}_{2}\right), 77.5\left(\mathrm{CH}_{2}\right), 60.7(\mathrm{C}), 50.8\left(\mathrm{CH}_{3}\right), 50.0\left(\mathrm{CH}_{3}\right), 49.2\left(\mathrm{CH}_{3}\right), 48.7\left(\mathrm{CH}_{3}\right)$, $39.2(\mathrm{CH}), 38.9(\mathrm{CH}), 38.3(\mathrm{CH}), 30.3(\mathrm{C}), 30.1(\mathrm{C}), 23.7\left(\mathrm{CH}_{3}\right), 22.9\left(\mathrm{CH}_{3}\right), 22.0\left(\mathrm{CH}_{3}\right), 21.8\left(\mathrm{CH}_{3}\right)$.

3j: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.16(\mathrm{t}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.14(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.02(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.67(\mathrm{~s}, 1 \mathrm{H}), 3.70-3.61(\mathrm{~m}, 3 \mathrm{H}), 3.60-3.55(\mathrm{~m}, 1 \mathrm{H})$, $3.54-3.49(\mathrm{~m}, 1 \mathrm{H}), 3.48-3.44(\mathrm{~m}, 2 \mathrm{H}), 3.43-3.37(\mathrm{~m}, 1 \mathrm{H}), 3.40(\mathrm{~s}, 3 \mathrm{H}), 3.36-3.28(\mathrm{~m}, 2 \mathrm{H}), 3.35(\mathrm{~s}, 3 \mathrm{H}), 3.21(\mathrm{dd}, J=8.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.18(\mathrm{~s}, 3 \mathrm{H}), 3.08$ (dd, $J=6.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.02(\mathrm{~s}, 3 \mathrm{H}), 1.14(\mathrm{~s}, 3 \mathrm{H}), 1.10(\mathrm{~s}, 3 \mathrm{H}), 0.73(\mathrm{~s}, 3 \mathrm{H}), 0.66(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 202.1(\mathrm{C}), 194.1(\mathrm{C}), 153.7(\mathrm{C})$, $137.9(\mathrm{C}), 128.2(\mathrm{CH}), 125.8(\mathrm{CH}), 99.1(\mathrm{CH}), 98.63(\mathrm{C}), 98.56(\mathrm{CH}), 94.8(\mathrm{C}), 77.8\left(\mathrm{CH}_{2}\right), 77.3\left(\mathrm{CH}_{2}\right), 76.69\left(\mathrm{CH}_{2}\right), 76.65\left(\mathrm{CH}_{2}\right), 52.0(\mathrm{CH}), 50.5\left(\mathrm{CH}_{3}\right)$, $50.1\left(\mathrm{CH}_{3}\right), 49.8\left(\mathrm{CH}_{3}\right), 48.8\left(\mathrm{CH}_{3}\right), 39.4(\mathrm{CH}), 38.1(\mathrm{CH}), 37.6(\mathrm{CH}), 30.2(\mathrm{C}), 30.0(\mathrm{C}), 23.0\left(\mathrm{CH}_{3}\right), 22.9\left(\mathrm{CH}_{3}\right), 21.7\left(\mathrm{CH}_{3} \times 2\right)$.

3k: ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.13(\mathrm{dd}, J=8.4,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.87(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.45(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.56(\mathrm{~s}, 3 \mathrm{H}), 3.48(\mathrm{~s}, 3 \mathrm{H}), 3.42(\mathrm{~s}, 3 \mathrm{H})$, $3.32(\mathrm{~s}, 3 \mathrm{H}), 3.37-3.28(\mathrm{~m}, 1 \mathrm{H}), 3.23-3.17(\mathrm{~m}, 1 \mathrm{H}), 3.16(\mathrm{~s}, 3 \mathrm{H}), 3.04(\mathrm{~s}, 3 \mathrm{H}), 3.02-2.96(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 MHz, CDCl $\left.{ }_{3}\right) \delta 201.9(\mathrm{C}), 189.1(\mathrm{C}), 152.2$ $(\mathrm{C}), 130.4(\mathrm{CH}), 129.6(\mathrm{CH}), 110.2(\mathrm{CH}), 98.7(\mathrm{C}), 94.2(\mathrm{C}), 88.6(\mathrm{C}), 77.2(\mathrm{C}), 55.6\left(\mathrm{CH}_{3}\right), 54.2\left(\mathrm{CH}_{3}\right), 50.5\left(\mathrm{CH}_{3}\right), 50.3\left(\mathrm{CH}_{3}\right), 49.2\left(\mathrm{CH}_{3}\right), 48.8\left(\mathrm{CH}_{3}\right), 40.3$ $(\mathrm{CH}), 39.1(\mathrm{CH}), 38.7(\mathrm{CH})$.

General procedure for the synthesis of benzobicyco[2.2.2]octadienone derivatives $\mathbf{4 a} \mathbf{- 4 k}$: A solution of dimer $\mathbf{3}$ (1.0 equiv) and imidazole (2.5 equiv) in o-dichlorobenzene (1 mL for 100 mg of dimer 3) was sealed and subjected to microwave irradiation [Biotage ${ }^{\circledR}$ microwave synthesizer] at appropriate temperature for an appropriate time to give corresponding benzobicyclo[2.2.2]octadien-one products after purification by flash column chromatography using ethyl acetate/hexanes

4a: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.90(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.67-6.58(\mathrm{~m}, 2 \mathrm{H}), 4.64(\mathrm{dd}, J=6.0,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.28(\mathrm{dd}, J=5.6,2.0$ $\mathrm{Hz}, 1 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 3.41(\mathrm{~s}, 3 \mathrm{H}), 3.26(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 195.8(\mathrm{C}), 148.3(\mathrm{C}), 143.5(\mathrm{C}), 133.3(\mathrm{CH}), 131.6(\mathrm{CH}), 131.1(\mathrm{C}), 128.8$ $(\mathrm{C}), 121.1(\mathrm{CH}), 114.1(\mathrm{CH}), 91.8(\mathrm{C}), 62.4\left(\mathrm{CH}_{3}\right), 56.8(\mathrm{CH}), 50.4\left(\mathrm{CH}_{3}\right), 49.9\left(\mathrm{CH}_{3}\right), 42.2(\mathrm{CH})$. HRMS (ESI$)$: calcd. for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{NaO}[\mathrm{M}+\mathrm{Na}] 299.0890$; found 299.0899.

4b: ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.05(\mathrm{~s}, 1 \mathrm{H}), 6.66(\mathrm{dd}, J=6.9,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.70(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.75(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.60(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{~s}$, $3 \mathrm{H}), 3.41(\mathrm{~s}, 3 \mathrm{H}), 3.27(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 192.6(\mathrm{C}), 149.5(\mathrm{C}), 143.1(\mathrm{C}), 131.83(\mathrm{C}), 131.82(\mathrm{CH}), 127.5(\mathrm{C}), 123.0(\mathrm{C}), 118.1(\mathrm{CH})$, $114.8(\mathrm{C}), 91.1(\mathrm{C}), 64.6(\mathrm{CH}), 62.6\left(\mathrm{CH}_{3}\right), 50.6\left(\mathrm{CH}_{3}\right), 50.2\left(\mathrm{CH}_{3}\right), 44.2(\mathrm{CH})$.

4c: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.79(\mathrm{~s}, 1 \mathrm{H}), 6.61(\mathrm{t}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.23(\mathrm{dd}, J=7.6,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.58(\mathrm{~s}, 1 \mathrm{H}), 4.56(\mathrm{dd}, J=6.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{~s}$, $3 \mathrm{H}), 3.41(\mathrm{~s}, 3 \mathrm{H}), 3.26(\mathrm{~s}, 3 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H}), 1.65(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 197.5(\mathrm{C}), 146.1(\mathrm{C}), 142.8(\mathrm{C}), 137.1(\mathrm{CH}), 133.6(\mathrm{CH}), 130.6(\mathrm{C})$, $128.9(\mathrm{C}), 123.0(\mathrm{C}), 120.0(\mathrm{CH}), 92.0(\mathrm{C}), 62.4\left(\mathrm{CH}_{3}\right), 60.3(\mathrm{C}), 50.2\left(\mathrm{CH}_{3}\right), 49.9\left(\mathrm{CH}_{3}\right), 41.5(\mathrm{CH}), 15.8\left(\mathrm{CH}_{3}\right), 12.8(\mathrm{CH})$. MS (APCI): m/z found $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{O}_{5}[\mathrm{M}-\mathrm{H}]^{-} 303$.

4d: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.64(\mathrm{~s}, 1 \mathrm{H}), 6.19-6.11(\mathrm{~m}, 1 \mathrm{H}), 4.48(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.41(\mathrm{~s}, 3 \mathrm{H}), 3.24(\mathrm{~s}, 3 \mathrm{H})$, $2.27(\mathrm{~s}, 3 \mathrm{H}), 1.95(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 194.6(\mathrm{C}), 147.6(\mathrm{C}), 141.9(\mathrm{C}), 141.4(\mathrm{C}), 131.7(\mathrm{C}), 129.7(\mathrm{C}), 126.9(\mathrm{C}), 125.8(\mathrm{CH})$, $115.3(\mathrm{CH}), 92.1(\mathrm{C}), 62.4\left(\mathrm{CH}_{3}\right), 59.0(\mathrm{CH}), 50.4\left(\mathrm{CH}_{3}\right), 49.8\left(\mathrm{CH}_{3}\right), 41.8(\mathrm{CH}), 19.8\left(\mathrm{CH}_{3}\right), 18.0\left(\mathrm{CH}_{3}\right)$. MS (APCI): m / z found $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{O}_{5}[\mathrm{M}-\mathrm{H}]^{-} 303$.

4e: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.79(\mathrm{~s}, 1 \mathrm{H}), 6.66(\mathrm{dd}, J=7.6,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.43(\mathrm{dd}, J=7.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.67(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.55(\mathrm{dd}, J=6.4,1.6 \mathrm{~Hz}, 1 \mathrm{H})$, $3.88(\mathrm{~s}, 3 \mathrm{H}), 3.38(\mathrm{~s}, 3 \mathrm{H}), 3.27(\mathrm{~s}, 3 \mathrm{H}), 2.73-2.57(\mathrm{~m}, 2 \mathrm{H}), 2.35-2.25(\mathrm{~m}, 1 \mathrm{H}), 2.15-2.06(\mathrm{~m}, 1 \mathrm{H}), 1.23-1.17(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(100MHz,CDCl} 3$) δ $197.4(\mathrm{C}), 145.6(\mathrm{C}), 142.9(\mathrm{C}), 133.7(\mathrm{CH}), 133.4(\mathrm{CH}), 130.0(\mathrm{C}), 129.3(\mathrm{C}), 129.2(\mathrm{C}), 119.3(\mathrm{CH}), 92.3(\mathrm{C}), 62.5\left(\mathrm{CH}_{3}\right), 59.2(\mathrm{C}), 50.14\left(\mathrm{CH}_{3}\right), 50.11$ $\left(\mathrm{CH}_{3}\right), 41.4(\mathrm{CH}), 23.2\left(\mathrm{CH}_{2}\right), 19.0\left(\mathrm{CH}_{2}\right), 14.0\left(\mathrm{CH}_{3}\right), 8.8\left(\mathrm{CH}_{3}\right) . \mathrm{MS}(\mathrm{ESI}): m / z$ found $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{O}_{5}[\mathrm{M}-\mathrm{H}]^{-} 331$.

4f: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.64(\mathrm{~s}, 1 \mathrm{H}), 6.15-6.10(\mathrm{~m}, 1 \mathrm{H}), 6.02(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.52(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.27(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.39(\mathrm{~s}$, $3 \mathrm{H}), 3.23(\mathrm{~s}, 3 \mathrm{H}), 2.58(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.32-2.18(\mathrm{~m}, 2 \mathrm{H}), 1.14(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.04(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl 3$) \delta 196.9(\mathrm{C})$, $147.7(\mathrm{C}), 147.1(\mathrm{C}), 141.3(\mathrm{C}), 135.9(\mathrm{C}), 132.1(\mathrm{C}), 126.2(\mathrm{C}), 124.1(\mathrm{CH}), 113.9(\mathrm{CH}), 92.3(\mathrm{C}), 62.1\left(\mathrm{CH}_{3}\right), 57.6(\mathrm{CH}), 50.3\left(\mathrm{CH}_{3}\right), 49.7\left(\mathrm{CH}_{3}\right), 41.5(\mathrm{CH})$, $26.7\left(\mathrm{CH}_{2}\right)$, $25.1\left(\mathrm{CH}_{2}\right), 15.6\left(\mathrm{CH}_{3}\right), 11.4\left(\mathrm{CH}_{3}\right)$.

4g: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.74(\mathrm{~s}, 1 \mathrm{H}), 6.64(\mathrm{dd}, J=7.6,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.41(\mathrm{dd}, J=7.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.59(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.53(\mathrm{dd}, J=6.8,1.6 \mathrm{~Hz}, 1 \mathrm{H})$, $3.88(\mathrm{~s}, 3 \mathrm{H}), 3.38(\mathrm{~s}, 3 \mathrm{H}), 3.26(\mathrm{~s}, 3 \mathrm{H}), 2.69-2.49(\mathrm{~m}, 2 \mathrm{H}), 2.26-2.15(\mathrm{~m}, 1 \mathrm{H}), 2.04-1.94(\mathrm{~m}, 1 \mathrm{H}), 1.69-1.53(\mathrm{~m}, 4 \mathrm{H}), 1.21(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.96(\mathrm{t}, J=$ $7.6 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 197.4(\mathrm{C}), 145.8(\mathrm{C}), 142.9(\mathrm{C}), 134.2(\mathrm{CH}), 133.3(\mathrm{CH}), 130.1(\mathrm{C}), 129.3(\mathrm{C}), 127.7(\mathrm{C}), 120.1(\mathrm{CH}), 92.3(\mathrm{C})$, $62.5\left(\mathrm{CH}_{3}\right), 58.9(\mathrm{C}), 50.2\left(\mathrm{CH}_{3}\right), 50.1\left(\mathrm{CH}_{3}\right), 41.4(\mathrm{CH}), 32.3\left(\mathrm{CH}_{2}\right), 28.7\left(\mathrm{CH}_{2}\right), 23.0\left(\mathrm{CH}_{2}\right), 17.7\left(\mathrm{CH}_{2}\right), 15.1\left(\mathrm{CH}_{3}\right), 14.1\left(\mathrm{CH}_{3}\right)$. MS (APCI): m/z found $\mathrm{C}_{21} \mathrm{H}_{29} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+} 361$.

4h: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.64(\mathrm{~s}, 1 \mathrm{H}), 6.14(\mathrm{dd}, J=6.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.49(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.26(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.40(\mathrm{~s}, 3 \mathrm{H})$, $\left.3.24(\mathrm{~s}, 3 \mathrm{H}), 2.55(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.28-2.14(\mathrm{~m}, 2 \mathrm{H}), 1.62-1.42(\mathrm{~m}, 4 \mathrm{H}), 0.93(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.85(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}(100 \mathrm{MHz}, \mathrm{CDCl})^{2}\right)$ $\delta 196.8(\mathrm{C}), 147.5(\mathrm{C}), 145.7(\mathrm{C}), 141.3(\mathrm{C}), 134.7(\mathrm{C}), 131.9(\mathrm{C}), 126.8(\mathrm{C}), 125.4(\mathrm{CH}), 114.5(\mathrm{CH}), 92.3(\mathrm{C}), 62.4\left(\mathrm{CH}_{3}\right), 57.8(\mathrm{CH}), 50.5(\mathrm{CH}), 49.8$ $\left(\mathrm{CH}_{3}\right), 41.7(\mathrm{CH}), 35.9\left(\mathrm{CH}_{2}\right), 34.2\left(\mathrm{CH}_{2}\right), 24.6\left(\mathrm{CH}_{2}\right), 20.2\left(\mathrm{CH}_{2}\right), 13.8\left(\mathrm{CH}_{3}\right), 13.4\left(\mathrm{CH}_{3}\right)$. HRMS (ESI'$)$: calcd. for $\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{NaO} 5[\mathrm{M}+\mathrm{Na}] 383.1829$; found 383.1837.

4i: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.78(\mathrm{~s}, 1 \mathrm{H}), 7.08(\mathrm{~s}, 1 \mathrm{H}), 6.74(\mathrm{dd}, J=7.6,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.63(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.53(\mathrm{~s}, 1 \mathrm{H}), 5.42(\mathrm{~s}, 1 \mathrm{H}), 4.66(\mathrm{dd}, J=$ $6.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 3.83-3.73(\mathrm{~m}, 4 \mathrm{H}), 3.72-3.62(\mathrm{~m}, 4 \mathrm{H}), 3.35(\mathrm{~s}, 3 \mathrm{H}), 3.28(\mathrm{~s}, 3 \mathrm{H}), 1.29(\mathrm{~s}, 6 \mathrm{H}), 0.82(\mathrm{~s}, 3 \mathrm{H}), 0.80(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}(100$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 194.0(\mathrm{C}), 147.6(\mathrm{C}), 144.2(\mathrm{C}), 133.6(\mathrm{C}), 132.8(\mathrm{CH}), 131.2(\mathrm{CH}), 126.9(\mathrm{C}), 121.7(\mathrm{C}), 119.2(\mathrm{CH}), 102.2(\mathrm{CH}), 98.9(\mathrm{CH}), 92.3(\mathrm{C}), 77.6$ $\left(\mathrm{CH}_{2}\right), 77.5\left(\mathrm{CH}_{2}\right), 77.4\left(\mathrm{CH}_{2}\right), 77.3\left(\mathrm{CH}_{2}\right), 62.5(\mathrm{C}), 61.5\left(\mathrm{CH}_{3}\right), 50.4\left(\mathrm{CH}_{3}\right), 50.0\left(\mathrm{CH}_{3}\right), 41.2(\mathrm{CH}), 30.34(\mathrm{C}), 30.31(\mathrm{C}), 23.3\left(\mathrm{CH}_{3}\right), 23.0\left(\mathrm{CH}_{3}\right), 21.9$ $\left(\mathrm{CH}_{3}\right), 21.8\left(\mathrm{CH}_{3}\right)$. MS (ESI): m / z found $\mathrm{C}_{27} \mathrm{H}_{37} \mathrm{O}_{9}[\mathrm{M}+\mathrm{H}]^{+} 505$.

4j: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.11(\mathrm{~s}, 1 \mathrm{H}), 6.56(\mathrm{ddd}, J=6.0,1.6,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.58(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.51(\mathrm{~s}, 1 \mathrm{H}), 5.02(\mathrm{~s}, 1 \mathrm{H}), 4.86(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.60$ (d, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.79-3.70(\mathrm{~m}, 2 \mathrm{H}), 3.68-3.58(\mathrm{~m}, 4 \mathrm{H}), 3.49-3.42(\mathrm{~m}, 2 \mathrm{H}), 3.39(\mathrm{~s}, 3 \mathrm{H}), 3.24(\mathrm{~s}, 3 \mathrm{H}), 1.28(\mathrm{~s}, 3 \mathrm{H}), 1.23(\mathrm{~s}, 3 \mathrm{H}), 0.79(\mathrm{~s}$, 3 H), $0.73(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(} 100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 195.8(\mathrm{C}), 147.8(\mathrm{C}), 143.6(\mathrm{C}), 142.2(\mathrm{C}), 131.8(\mathrm{C}), 130.7(\mathrm{C}), 129.8(\mathrm{CH}), 126.9(\mathrm{C}), 112.4(\mathrm{CH}), 99.4$ $(\mathrm{CH}), 98.9(\mathrm{CH}), 91.9(\mathrm{C}), 77.74\left(\mathrm{CH}_{2}\right), 77.70\left(\mathrm{CH}_{2}\right), 77.14\left(\mathrm{CH}_{2}\right), 76.95\left(\mathrm{CH}_{2}\right), 62.3\left(\mathrm{CH}_{3}\right), 52.8(\mathrm{CH}), 50.4\left(\mathrm{CH}_{3}\right), 50.1\left(\mathrm{CH}_{3}\right), 41.8(\mathrm{CH}), 30.2(\mathrm{C}), 30.1$ (C), $23.18\left(\mathrm{CH}_{3}\right), 23.16\left(\mathrm{CH}_{3}\right), 21.9\left(\mathrm{CH}_{3}\right), 21.8\left(\mathrm{CH}_{3}\right)$. MS (ESI): m / z found $\mathrm{C}_{27} \mathrm{H}_{35} \mathrm{O}_{9}[\mathrm{M}-\mathrm{H}]^{-} 503$.

4k: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.83(\mathrm{~s}, 1 \mathrm{H}), 6.81-6.62(\mathrm{~m}, 2 \mathrm{H}), 5.56(\mathrm{~s}, 1 \mathrm{H}), 4.61(\mathrm{dd}, J=6.6,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.96(\mathrm{~s}, 3 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.39$ $(\mathrm{s}, 3 \mathrm{H}), 3.29(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 195.0(\mathrm{C}), 146.8(\mathrm{C}), 143.1(\mathrm{C}), 137.8(\mathrm{C}), 133.3(\mathrm{CH}), 130.2(\mathrm{CH}), 128.4(\mathrm{C}), 122.3(\mathrm{C}), 100.5(\mathrm{CH})$, $91.6(\mathrm{C}), 87.6(\mathrm{C}), 61.3\left(\mathrm{CH}_{3}\right), 56.4\left(\mathrm{CH}_{3}\right), 54.6\left(\mathrm{CH}_{3}\right), 50.3\left(\mathrm{CH}_{3}\right), 50.0\left(\mathrm{CH}_{3}\right), 40.2(\mathrm{CH}) . \mathrm{MS}(\mathrm{ESI}): m / z$ found $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{O}_{7}[\mathrm{M}+\mathrm{H}]^{+} 337$.

General procedure for the preparation of bicyclo[2.2.2] system fused MOB derivatives $\mathbf{5 a}, \mathbf{5 c}, \mathbf{5 d} \mathbf{~ a n d ~} \mathbf{5 g}$: To a solution of benzobicyclo[2.2.2]octadienone ($\mathbf{4}, 1.0$ equiv) in methanol (4 mL for 1 mmol of $\mathbf{4}$) was added DAIB (1.3 equiv) at $0^{\circ} \mathrm{C}$ and the resulting mixture was stirred for 45 min at room temperature. The reaction mixture was concentrated and the residue was purified by column chromatography on silica gel by using a mixture of ethyl acetate and hexanes as eluent to give corresponding MOBs 5 .

5a: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.87(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.58(\mathrm{ddd}, J=8.1,6.6,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.49(\mathrm{ddd}, J=7.2,5.7,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.93(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H})$, $\left.4.35(\mathrm{dd}, J=6.3,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.04(\mathrm{dd}, J=5.7,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.34(\mathrm{~s}, 3 \mathrm{H}), 3.32(\mathrm{~s}, 3 \mathrm{H}), 3.30(\mathrm{~s}, 3 \mathrm{H}), 3.13(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(75MHz,CDCl}_{3}\right) 8196.8(\mathrm{C})$, $193.8(\mathrm{C}), 146.8(\mathrm{C}), 139.2(\mathrm{CH}), 135.0(\mathrm{C}), 134.4(\mathrm{CH}), 128.4(\mathrm{CH}), 125.4(\mathrm{CH}), 92.5(\mathrm{C}), 90.3(\mathrm{C}), 57.03(\mathrm{CH}), 51.1\left(\mathrm{CH}_{3} \times 2\right), 50.6\left(\mathrm{CH}_{3}\right), 49.8\left(\mathrm{CH}_{3}\right)$, 44.1 (CH).

5c: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta 6.69(\operatorname{app} \mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.56(\mathrm{t}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.05(\mathrm{dd}, J=6.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.26(\mathrm{dd}, J=6.4,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.34$ $(\mathrm{s}, 3 \mathrm{H}), 3.30(\mathrm{~s}, 3 \mathrm{H}), 3.29(\mathrm{~s}, 3 \mathrm{H}), 3.11(\mathrm{~s}, 3 \mathrm{H}), 1.86(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.54(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 197.1(\mathrm{C}), 195.7(\mathrm{C}), 144.9(\mathrm{C}), 136.9$ (C), $134.7(\mathrm{CH}), 134.4(\mathrm{CH}), 133.0(\mathrm{C}), 132.0(\mathrm{CH}), 92.6(\mathrm{C}), 90.8(\mathrm{C}), 55.9(\mathrm{C}), 51.1\left(\mathrm{CH}_{3}\right), 50.9\left(\mathrm{CH}_{3}\right), 50.6\left(\mathrm{CH}_{3}\right), 49.7\left(\mathrm{CH}_{3}\right), 43.2(\mathrm{CH}), 15.1\left(\mathrm{CH}_{3}\right)$, $12.6\left(\mathrm{CH}_{3}\right)$.

5d: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.14(\mathrm{dt}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.84(\operatorname{app} \mathrm{t}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.23(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.98(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.34(\mathrm{~s}, 3 \mathrm{H})$, $3.33(\mathrm{~s}, 3 \mathrm{H}), 3.30(\mathrm{~s}, 3 \mathrm{H}), 3.17(\mathrm{~s}, 3 \mathrm{H}), 2.09(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.96(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 195.8$ (C), 194.6 (C), 149.4 (C), $146.9(\mathrm{C}), 138.9(\mathrm{C}), 136.2(\mathrm{C}), 126.9(\mathrm{CH}), 123.6(\mathrm{CH}), 92.4(\mathrm{C}), 90.8(\mathrm{C}), 59.1(\mathrm{CH}), 51.3\left(\mathrm{CH}_{3}\right), 51.2\left(\mathrm{CH}_{3}\right), 50.4\left(\mathrm{CH}_{3}\right), 50.0\left(\mathrm{CH}_{3}\right), 43.6(\mathrm{CH}), 20.6$ $\left(\mathrm{CH}_{3}\right), 19.4\left(\mathrm{CH}_{3}\right)$.

5g: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.60(\mathrm{~s}, 1 \mathrm{H}), 6.58(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.26(\mathrm{dd}, J=6.8,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.25(\mathrm{dd}, J=6.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.29(\mathrm{~s}, 3 \mathrm{H}), 3.28(\mathrm{~s}$, $3 \mathrm{H}), 3.10(\mathrm{~s}, 6 \mathrm{H}), 2.30-2.15(\mathrm{~m}, 2 \mathrm{H}), 2.13-2.03(\mathrm{~m}, 1 \mathrm{H}), 1.91-1.80(\mathrm{~m}, 1 \mathrm{H}), 1.62-1.52(\mathrm{~m}, 1 \mathrm{H}), 1.50-1.38(\mathrm{~m}, 3 \mathrm{H}), 1.08(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.90(\mathrm{t}, J=$
$7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 196.9(\mathrm{C}), 195.5(\mathrm{C}), 145.7(\mathrm{C}), 136.84(\mathrm{C}), 136.77(\mathrm{C}), 134.5(\mathrm{CH}), 131.6(\mathrm{CH}), 131.3(\mathrm{CH}), 92.7(\mathrm{C}), 91.2(\mathrm{C})$, $59.6(\mathrm{C}), 51.3\left(\mathrm{CH}_{3}\right), 50.9\left(\mathrm{CH}_{3}\right), 50.8\left(\mathrm{CH}_{3}\right), 49.6\left(\mathrm{CH}_{3}\right), 42.9(\mathrm{CH}), 30.9\left(\mathrm{CH}_{2}\right), 28.3\left(\mathrm{CH}_{2}\right), 21.7\left(\mathrm{CH}_{2}\right), 18.0\left(\mathrm{CH}_{2}\right), 14.9\left(\mathrm{CH}_{3}\right), 13.8\left(\mathrm{CH}_{3}\right)$.

General procedure for the preparation of benzobicyclo[2.2.2]octadienedione 6: To benzobicyclo[2.2.2]octadienone $\mathbf{4}$ (500 mg) was added 2 N aqueous $\mathrm{H}_{2} \mathrm{SO}_{4}(10 \mathrm{~mL})$. The reaction mixture was heated to $50^{\circ} \mathrm{C}$ for 16 h . The reaction was brought to room temperature and extracted with ethyl acetate. The organic extract was concentrated to give a residue which was purified by column chromatography on silica gel by using a mixture of ethyl acetate and hexanes as eluent to give corresponding benzobicyclo[2.2.2]octadienedione $\mathbf{6}$.

6a: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.04(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{ddd}, J=7.5,6.0,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{ddd}, J=7.8,6.3,1.8 \mathrm{~Hz}, 1 \mathrm{H})$, $5.83(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.87(\mathrm{dd}, J=6.0,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{dd}, J=6.0,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 181.8(\mathrm{C}), 181.4(\mathrm{C}), 149.7(\mathrm{C})$, $143.8(\mathrm{C}), 132.9(\mathrm{CH}), 130.9(\mathrm{CH}), 126.8(\mathrm{C}), 126.4(\mathrm{C}), 122.5(\mathrm{CH}), 117.0(\mathrm{CH}), 62.9\left(\mathrm{CH}_{3}\right), 55.1(\mathrm{CH}), 50.2(\mathrm{CH}) . \mathrm{MS}(\mathrm{ESI}): \mathrm{m} / \mathrm{z}$ found $\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{O}_{4}[\mathrm{M}-\mathrm{H}]^{-}$ 229.

6h: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.80(\mathrm{~s}, 1 \mathrm{H}), 6.29-6.23(\mathrm{~m}, 1 \mathrm{H}), 5.72(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.73(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.47(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 2.65-$ $2.51(\mathrm{~m}, 2 \mathrm{H}), 2.38-2.29(\mathrm{~m}, 2 \mathrm{H}), 1.63-1.48(\mathrm{~m}, 4 \mathrm{H}), 0.95(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.88(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 183.0(\mathrm{C}), 182.6(\mathrm{C})$, $148.9(\mathrm{C}), 147.9(\mathrm{C}), 141.6(\mathrm{C}), 136.2(\mathrm{C}), 127.6(\mathrm{C}), 124.7(\mathrm{C}), 123.0(\mathrm{CH}), 117.2(\mathrm{CH}), 62.8(\mathrm{CH} 3), 56.1(\mathrm{CH}), 49.5(\mathrm{CH}), 36.2\left(\mathrm{CH}_{2}\right), 34.3\left(\mathrm{CH}_{2}\right), 24.5$ $\left(\mathrm{CH}_{2}\right), 20.3\left(\mathrm{CH}_{2}\right), 13.8\left(\mathrm{CH}_{3}\right), 13.5\left(\mathrm{CH}_{3}\right)$.

General procedure for the preparation of benzoquinoxalinobarralenes 10-13: A solution of benzobicyclo[2.2.2]octadienedione $\mathbf{6}$ (1.0 equiv) and o phenylenediamine (1.0 equiv) in a mixture of $\mathrm{AcOH} / \mathrm{MeOH}(1: 1,2 \mathrm{~mL}$ for 100 mg of $\mathbf{6})$ was stirred at room temperature for 15 min . In the case of reaction between $6 \mathbf{6}$ and o-phenylenediamine $\mathbf{7 - 9}$, corresponding benzoquinoxalinobarralenes $\mathbf{1 0 - 1 2}$ precipitated in the reaction mixture which was filtered and washed with cold methanol to give pure products. However, in the case of reaction between $\mathbf{6 h}$ and $\mathbf{7}$, column chromatography was performed to give the corrresponding benzoquinoxalinobarralene 13.

10: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.00-7.80(\mathrm{~m}, 2 \mathrm{H}), 7.65-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.20-7.02(\mathrm{~m}, 3 \mathrm{H}), 6.70(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.51(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.59(\mathrm{dd}, J=5.7,1.5$ $\mathrm{Hz}, 1 \mathrm{H}), 5.22(\mathrm{dd}, J=6.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.0(\mathrm{C}), 157.3(\mathrm{C}), 147.5(\mathrm{C}), 143.6(\mathrm{C}), 139.2(\mathrm{CH}), 138.5(\mathrm{C} \times 2)$, $137.0(\mathrm{CH}), 135.1(\mathrm{C}), 134.6(\mathrm{C}), 129.1(\mathrm{CH}), 129.0(\mathrm{CH}), 128.3(\mathrm{CH} \times 2), 120.8(\mathrm{CH}), 113.1(\mathrm{CH}), 62.6\left(\mathrm{CH}_{3}\right), 51.5(\mathrm{CH}), 46.4(\mathrm{CH}) . \mathrm{MS}(\mathrm{ESI}): \mathrm{m} / \mathrm{z}$ found $\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 303$.

11: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.63(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.14(\mathrm{ddd}, J=7.2,6.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{ddd}, J=7.2,6.0,1.6 \mathrm{~Hz}$, $1 \mathrm{H}), 6.67(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.87(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.54(\mathrm{dd}, J=6.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.18(\mathrm{dd}, J=6.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 2.42(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}(100 \mathrm{MHz}$, CDCl_{3}) $\delta 157.2(\mathrm{C}), 156.4(\mathrm{C}), 147.2(\mathrm{C}), 143.4(\mathrm{C}), 139.3(\mathrm{CH}), 139.1(\mathrm{C}), 138.9(\mathrm{C}), 137.3(\mathrm{C}), 137.2(\mathrm{C}), 137.0(\mathrm{CH}), 135.7(\mathrm{C}), 134.8(\mathrm{C}), 127.8(\mathrm{CH})$, $120.7(\mathrm{CH} \times 2), 112.6(\mathrm{CH}), 62.8\left(\mathrm{CH}_{3}\right), 51.6(\mathrm{CH}), 46.6(\mathrm{CH}), 20.14\left(\mathrm{CH}_{3}\right), 20.12\left(\mathrm{CH}_{3}\right) . \mathrm{MS}(\mathrm{ESI}): m / z$ found $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 331$.

12: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 9.44(\mathrm{~s}, 1 \mathrm{H}), 8.17(\mathrm{~s}, 1 \mathrm{H}), 8.13(\mathrm{~s}, 1 \mathrm{H}), 7.25-7.15(\mathrm{~s}, 2 \mathrm{H}), 7.08(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.60(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.52(\mathrm{dd}$, $J=5.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.27(\mathrm{dd}, J=6.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 159.4(\mathrm{C}), 158.9(\mathrm{C}), 148.6(\mathrm{C}), 143.8(\mathrm{C}), 138.9(\mathrm{CH})$, $137.2(\mathrm{CH}), 137.1(\mathrm{C}), 134.4(\mathrm{C}), 133.0(\mathrm{C}), 131.5(\mathrm{C}), 131.4(\mathrm{C}), 129.0(\mathrm{CH}), 128.9(\mathrm{CH}), 120.3(\mathrm{CH}), 114.1(\mathrm{CH}), 61.0(\mathrm{CH}), 50.1(\mathrm{CH}), 45.3(\mathrm{CH})$. HRMS (ESI ${ }^{+}$): calcd. for $\mathrm{C}_{19} \mathrm{H}_{13} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}] 371.0349$; found 371.0359 .

13: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.94-7.83(\mathrm{~m}, 2 \mathrm{H}), 7.64-7.57(\mathrm{~m}, 2 \mathrm{H}), 6.59-6.53(\mathrm{~m}, 2 \mathrm{H}), 6.30(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.45(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.19(\mathrm{~d}, \mathrm{~J}=1.6 \mathrm{~Hz}$, $1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 2.70(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.37-2.30(\mathrm{~m}, 2 \mathrm{H}), 1.71-1.46(\mathrm{~m}, 4 \mathrm{H}), 0.98(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.80(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 158.5(\mathrm{C}), 158.2(\mathrm{C}), 153.6(\mathrm{C}), 146.9(\mathrm{C}), 141.4(\mathrm{C}), 138.6(\mathrm{C}), 135.2(\mathrm{C}), 134.5(\mathrm{C}), 132.9(\mathrm{C}), 128.84(\mathrm{CH}), 128.75(\mathrm{CH}), 128.7(\mathrm{CH}), 128.3$ $(\mathrm{CH}), 128.2(\mathrm{CH}), 113.6(\mathrm{CH}), 62.6(\mathrm{CH} 3), 52.3(\mathrm{CH}), 46.0(\mathrm{CH}), 35.8\left(\mathrm{CH}_{2}\right), 34.5\left(\mathrm{CH}_{2}\right), 24.7\left(\mathrm{CH}_{2}\right), 20.2\left(\mathrm{CH}_{2}\right), 14.0\left(\mathrm{CH}_{3}\right), 13.7\left(\mathrm{CH}_{3}\right) . \mathrm{MS}(\mathrm{ESI}): m / z$ found $\mathrm{C}_{25} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 387$.

General procedure for the \boldsymbol{O}-alkylation of benzobicyclo[2.2.2]octadienone 4a: To a solution of benzobicyclo[2.2.2]octadienone $\mathbf{4 a}$ (1.0 equiv) in $\mathrm{CH}_{3} \mathrm{CN}$ (2.5 mL for 100 mg) was added alkylating agent MeI (2.5 equiv) or allyl bromide (2.0 equiv) or methyl bromoacetate (2.0 equiv) and stirred at room temperature for 16 h . Reaction mixture was filtered, solvents evaporated and the residue was purified by column chromatography on silica gel by using a mixture of ethyl acetate and hexanes as eluent to give corresponding alkylated products 14-16.

14: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.94(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.74(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.65-6.56(\mathrm{~m}, 2 \mathrm{H}), 4.76-4.70(\mathrm{~m}, 1 \mathrm{H}), 4.28-4.24(\mathrm{~m}, 1 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H})$, $3.85(\mathrm{~s}, 3 \mathrm{H}), 3.40(\mathrm{~s}, 3 \mathrm{H}), 3.26(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 196.2(\mathrm{C}), 152.1(\mathrm{C}), 145.3(\mathrm{C}), 134.1(\mathrm{CH}), 131.6(\mathrm{C}), 130.9(\mathrm{CH}), 129.2(\mathrm{C}), 120.0$ $(\mathrm{CH}), 110.7(\mathrm{CH}), 92.0(\mathrm{C}), 61.4\left(\mathrm{CH}_{3}\right), 56.8(\mathrm{CH}), 55.9\left(\mathrm{CH}_{3}\right), 50.3\left(\mathrm{CH}_{3}\right), 50.1\left(\mathrm{CH}_{3}\right), 41.8(\mathrm{CH})$.

15: ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.92(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.64-6.58(\mathrm{~m}, 2 \mathrm{H}), 6.14-6.01(\mathrm{~m}, 1 \mathrm{H}), 5.42(\mathrm{ddd}, J=17.1,3.0,1.5 \mathrm{~Hz}$, $1 \mathrm{H}), 5.28(\mathrm{ddd}, J=10.5,3.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.77-4.72(\mathrm{~m}, 1 \mathrm{H}), 4.59-4.54(\mathrm{~m}, 2 \mathrm{H}), 4.28-4.23(\mathrm{~m}, 1 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H}), 3.41(\mathrm{~s}, 3 \mathrm{H}), 3.27(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} N \mathrm{NR}(75$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 196.2(\mathrm{C}), 151.0(\mathrm{C}), 145.7(\mathrm{C}), 134.2(\mathrm{CH}), 133.2(\mathrm{CH}), 131.7(\mathrm{C}), 130.9(\mathrm{CH}), 129.6(\mathrm{C}), 119.9(\mathrm{CH}), 117.5\left(\mathrm{CH}_{2}\right), 112.5(\mathrm{CH}), 92.0(\mathrm{C})$, $69.8\left(\mathrm{CH}_{2}\right), 61.4\left(\mathrm{CH}_{3}\right), 56.8(\mathrm{CH}), 50.4\left(\mathrm{CH}_{3}\right), 50.1\left(\mathrm{CH}_{3}\right), 41.8(\mathrm{CH}) . \mathrm{MS}(\mathrm{APCI}): m / z$ found $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{O}_{5}[\mathrm{M}-\mathrm{H}]^{-} 315$.

16: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.91(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.63-6.56(\mathrm{~m}, 2 \mathrm{H}), 4.74(\mathrm{app} \mathrm{dd}, J=5.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.67(\mathrm{~s}, 2 \mathrm{H})$, $4.26(\mathrm{app} \mathrm{dd}, J=5.2,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.96(\mathrm{~s}, 3 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.40(\mathrm{~s}, 3 \mathrm{H}), 3.26(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 196.1(\mathrm{C}), 169.2(\mathrm{C}), 150.3(\mathrm{C}), 145.9$ (C), $134.1(\mathrm{CH}), 132.1(\mathrm{C}), 130.9(\mathrm{C}), 130.8(\mathrm{CH}), 119.9(\mathrm{CH}), 112.6(\mathrm{CH}), 91.9(\mathrm{C}), 66.2\left(\mathrm{CH}_{2}\right), 61.6\left(\mathrm{CH}_{3}\right), 56.9(\mathrm{CH}), 52.2\left(\mathrm{CH}_{3}\right), 50.3\left(\mathrm{CH}_{3}\right), 50.1\left(\mathrm{CH}_{3}\right)$, 41.8 (CH).

Procedure for Chan-Lam coupling of benzobicyclo[2.22]octadienone 4a: A mixture of compound $\mathbf{4 a}$ (1.0 equiv), phenylboronic acid (1.5 equiv),
$\mathrm{Cu}(\mathrm{OAc})_{2}\left(2.5\right.$ equiv), pyridine (2 equiv), $4 \AA \mathrm{MS}\left(2.5\right.$ times wt/wt of $4 \mathbf{a}$) was stirred in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$ under oxygen balloon at room temperature for 16
h. The reaction mixture was directly passed through celite. After rinsed with further 10 mL of ethyl acetate, it was concentrated by rotatory evaporation. The residue was purified by column chromatography on silica gel to give product 17.

17: ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.35-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.11-7.02(\mathrm{~m}, 1 \mathrm{H}), 6.98-6.90(\mathrm{~m}, 3 \mathrm{H}), 6.84(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.69-6.59(\mathrm{~m}, 2 \mathrm{H}), 4.82-4.74(\mathrm{~m}$, $1 \mathrm{H}), 4.36-4.29(\mathrm{~m}, 1 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 3.42(\mathrm{~s}, 3 \mathrm{H}), 3.29(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 195.9(\mathrm{C}), 157.7(\mathrm{C}), 147.9(\mathrm{C}), 147.8(\mathrm{C}), 134.2(\mathrm{CH}), 133.2$ $(\mathrm{C}), 132.3(\mathrm{C}), 130.6(\mathrm{CH}), 129.6\left(\mathrm{CH}\right.$ X 2), $122.7(\mathrm{CH}), 120.3(\mathrm{CH}), 120.1(\mathrm{CH}), 117.1(\mathrm{CH} \mathrm{X} 2), 91.8(\mathrm{C}), 61.5\left(\mathrm{CH}_{3}\right), 57.2(\mathrm{CH}), 50.4\left(\mathrm{CH}_{3}\right), 50.1\left(\mathrm{CH}_{3}\right)$, $41.9(\mathrm{CH})$. HRMS $\left(\mathrm{APCI}^{+}\right)$: calcd. for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}] 353.1384$; found 353.1376.

Procedure for hydrogenation reaction of benzobicyclo[2.22]octadienone 4a: To a solution of compound $\mathbf{4 a}$ (1.0 equiv) in ethyl acetate (4 mL for 100 mg) was added 10% wet $\mathrm{Pd}-\mathrm{C}(30 \% \mathrm{wt} / \mathrm{wt}$ with respect to compound $\mathbf{4 a})$. The reaction was stirred under hydrogen balloon for 4 h . Reaction mixture was filtered through a pad of celite to give corresponding hydrogenation product $\mathbf{1 8}$ in quantitative yield.

18: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.84-6.78(\mathrm{~m}, 2 \mathrm{H}), 5.80(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.90-3.80(\mathrm{~m}, 1 \mathrm{H}$ merged with 3.87 singlet), $3.87(\mathrm{~s}, 3 \mathrm{H}), 3.50(\mathrm{dd}, J=3.2,2.4 \mathrm{~Hz}, 1 \mathrm{H}$), $3.42(\mathrm{~s}, 3 \mathrm{H}), 3.25(\mathrm{~s}, 3 \mathrm{H}), 2.23-2.05(\mathrm{~m}, 1 \mathrm{H}), 1.74-1.64(\mathrm{~m}, 1 \mathrm{H}), 1.48-1.37(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 203.4(\mathrm{C}), 148.3(\mathrm{C}), 143.2(\mathrm{C}), 132.5$ $(\mathrm{C}), 128.0(\mathrm{C}), 121.7(\mathrm{CH}), 114.5(\mathrm{CH}), 95.3(\mathrm{C}), 62.2\left(\mathrm{CH}_{3}\right), 51.1(\mathrm{CH}), 50.5\left(\mathrm{CH}_{3}\right), 49.7\left(\mathrm{CH}_{3}\right), 37.1(\mathrm{CH}), 23.7\left(\mathrm{CH}_{2}\right), 19.8(\mathrm{CH})$. MS (ESI): m/z found $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{O}_{5}[\mathrm{M}-\mathrm{H}]^{-} 277$.

Procedure for bromination of benzobicyclo[2.22]octadienone 4a: A solution of the compound $\mathbf{4 a}$ (1.0 mmol) in methylene chloride (5 mL) was treated with NBS $(1.0 \mathrm{mmol})$ at room temperature and allowed to stir for 16 h . The solvent was evaporated and the residue taken up in ethyl acetate and water. The organic extracts were collected, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to give the corresponding bromo phenol 19 after column chromatography using ethyl acetate/hexanes.

19: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.27-7.28(\mathrm{~m}, 1 \mathrm{H}), 7.16(\mathrm{~s}, 1 \mathrm{H}), 6.63-6.58(\mathrm{~m}, 2 \mathrm{H}), 5.80(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.65(\mathrm{dd}, J=4.4,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.24-4.21(\mathrm{~m}, 1 \mathrm{H})$, $3.93(\mathrm{~s}, 3 \mathrm{H}), 3.40(\mathrm{~s}, 3 \mathrm{H}), 3.25(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 195.3(\mathrm{C}), 145.5(\mathrm{C}), 144.0(\mathrm{C}), 133.7(\mathrm{CH}), 131.14(\mathrm{C}), 131.11(\mathrm{CH}), 129.6(\mathrm{C})$, $123.6(\mathrm{CH}), 107.7(\mathrm{C}), 91.6(\mathrm{C}), 62.1\left(\mathrm{CH}_{3}\right), 56.4(\mathrm{CH}), 50.4\left(\mathrm{CH}_{3}\right), 50.1\left(\mathrm{CH}_{3}\right), 42.0(\mathrm{CH})$. HRMS (ESI$)$: calcd. for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{BrO} 5[\mathrm{M}+\mathrm{H}] 353.0030$; found 353.0033.

Procedure for the Michael type addition of benzobicyclo[2.22]octadienone 4a to ethylpropiolate: A solution of the benzobicyclo[2.22]octadienone 4a (1.0 equiv), ethyl propiolate (1.5 equiv), and $\mathrm{Et}_{3} \mathrm{~N}$ (2.0 equiv) in THF was stirred at room temperature for 16 h . The reaction was diluted with water and extracted with ethyl acetate. The organic extracts were collected, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to give the corresponding bromo phenoxyacrylate $\mathbf{2 0}$ after column chromatography using ethyl acetate/hexanes.

20: ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.61(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.66-6.57(\mathrm{~m}, 2 \mathrm{H}), 5.30(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.69(\mathrm{dd}, J=5.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.33-4.28(\mathrm{~m}$, $1 \mathrm{H}), 4.15(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.40(\mathrm{~s}, 3 \mathrm{H}), 3.24(\mathrm{~s}, 3 \mathrm{H}), 1.25(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 194.7(\mathrm{C}), 166.8(\mathrm{C}), 159.9$ $(\mathrm{CH}), 148.8(\mathrm{C}), 144.5(\mathrm{C}), 136.1(\mathrm{C}), 133.9(\mathrm{CH}), 132.4(\mathrm{C}), 130.5(\mathrm{CH}), 124.3(\mathrm{CH}), 114.3(\mathrm{C}), 101.1(\mathrm{CH}), 91.2(\mathrm{C}), 61.9\left(\mathrm{CH}_{3}\right), 60.1\left(\mathrm{CH}_{2}\right), 56.9(\mathrm{CH})$, $50.4\left(\mathrm{CH}_{3}\right), 50.1\left(\mathrm{CH}_{3}\right), 41.9(\mathrm{CH}), 14.2\left(\mathrm{CH}_{3}\right)$.

Procedure for the intramolecular Heck type Coupling of compound 20: Bromo phenoxyarylate 20 (1.0 equiv) in DMF was degassed using argon balloon. $\mathrm{Pd}(\mathrm{OAc})_{2}\left(0.4\right.$ equiv), PPh_{3} (0.8 equiv), and $\mathrm{K}_{2} \mathrm{CO}_{3}$ (1.0 equiv) were added in sequence. The mixture was then heated at 110 oc overnight and then cooled to room temperature and diluted with water and ethyl acetate. The organic extracts were collected, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to give the corresponding benzofuran derivative $\mathbf{2 1}$ after column chromatography using ethyl acetate/hexanes.

21: ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.22(\mathrm{~s}, 1 \mathrm{H}), 7.62(\mathrm{~s}, 1 \mathrm{H}), 6.69-6.59(\mathrm{~m}, 2 \mathrm{H}), 4.84(\mathrm{dd}, J=5.7,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{dd}, J=5.7,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.39(\mathrm{q}, J=$ $7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.24(\mathrm{~s}, 3 \mathrm{H}), 3.42(\mathrm{~s}, 3 \mathrm{H}), 3.26(\mathrm{~s}, 3 \mathrm{H}), 1.41(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 196.2(\mathrm{C}), 163.1(\mathrm{C}), 150.7(\mathrm{CH}), 145.9(\mathrm{C})$, $141.0(\mathrm{C}), 134.6(\mathrm{CH}), 134.3(\mathrm{C}), 130.7(\mathrm{CH}), 126.2(\mathrm{C}), 125.6(\mathrm{C}), 115.1(\mathrm{C}), 111.9(\mathrm{CH}), 92.0(\mathrm{C}), 60.8\left(\mathrm{CH}_{2}\right), 60.7\left(\mathrm{CH}_{3}\right), 57.7(\mathrm{CH}), 50.5(\mathrm{CH}), 49.9$ $\left(\mathrm{CH}_{3}\right), 41.4(\mathrm{CH}), 14.3\left(\mathrm{CH}_{3}\right)$.

Procedure for vinyl Grignard addition to benzobicyclo[2.2.2]octadienone 14: To a solution of benzobicyclo[2.2.2]octadienone $\mathbf{1 4}$ (1.0 equiv) in THF at $78{ }^{\circ} \mathrm{C}$ was added vinylmagnesium bromide (1.0 M in THF, 4.0 equiv). The reaction mixture was brought to room temperature and stirred for 16 h . Reaction mixture was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ followed by extraction with ethyl acetate. The organic extracts were collected, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to give inseparable mixture of products $\mathbf{2 2}$ after column chromatography using ethyl acetate/hexanes.

22: The selected ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data of major and minor isomers presented here was taken from the spectra of isomeric mixture of 22. Major isomer : ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.95(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.56-6.42(\mathrm{~m}, 2 \mathrm{H}), 6.02(\mathrm{dd}, J=17.1,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.50(\mathrm{dd}, J=17.1,2.1$ $\mathrm{Hz}, 1 \mathrm{H}), 5.11(\mathrm{dd}, J=10.8,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.56(\mathrm{dd}, J=6.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.57(\mathrm{dd}, J=6.3,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.30(\mathrm{~s}, 3 \mathrm{H}), 3.27(\mathrm{~s}, 3 \mathrm{H})$. Minor isomer: ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.86(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.64-6.46(\mathrm{~m}, 2 \mathrm{H}), 5.48-5.43(\mathrm{~m}, 2 \mathrm{H}), 4.99(\mathrm{t}, J=6.3 \mathrm{~Hz}$, $\left.1 \mathrm{H}), 4.56(\mathrm{dd}, J=6.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.62(\mathrm{dd}, J=6.0,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.38(\mathrm{~s}, 3 \mathrm{H}), 3.18(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}(75 \mathrm{MHz}, \mathrm{CDCl})^{2}\right) \delta 151.0$ (C), 144.8 (C), 142.0 (CH major), 141.2 (CH minor), 135.9 (CH minor), 134.6 (CH major), 133.6 (C), 132.2 (C), 131.9 (CH major), 131.8 (CH minor), 121.2 (CH major), 120.1 (CH minor), $112.1\left(\mathrm{CH}_{2}\right.$ major $), 111.7\left(\mathrm{CH}_{2}\right.$ major), $109.5\left(\mathrm{CH}\right.$ minor), $109.4\left(\mathrm{CH}\right.$ major), $105.1(\mathrm{C}), 61.50\left(\mathrm{C}\right.$ major), $61.49\left(\mathrm{CH}_{3}\right), 55.8$ $\left(\mathrm{CH}_{3}\right.$ major and minor), $55.61(\mathrm{C}), 55.59\left(\mathrm{CH}\right.$ major), $51.41\left(\mathrm{CH}_{3}\right.$ major $), 51.02\left(\mathrm{CH}_{3}\right.$ major), $50.8\left(\mathrm{CH}_{3}\right.$ major $), 50.6\left(\mathrm{CH}_{3}\right.$ minor $), 42.7(\mathrm{CH}$ major $), 42.3$ (CH minor).

\qquad

AMRI; SRC AV400
location; 18

AMRI SRC
location; 17

\qquad

