Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2014

Structural Characterization of α-Amino Acid Complexes of Molybdates: a Spectroscopic and DFT Study

Lorenzo Biancalana, Marco Bortoluzzi, Claudia Forte, Fabio Marchetti, Guido Pampaloni

SUPPORTING INFORMATION

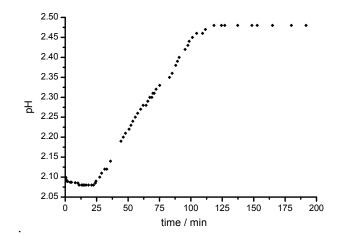

- Synthesis of Mo₂O₄(OH)₄(aaH) complexes: the influence of experimental parameters. Compounds 1-6 were obtained under different experimental conditions as follows. The formation of identical products was checked by comparison of spectroscopic (IR, ¹³C CP-MAS NMR) and elemental analysis data (C, H, N, Mo). A) Formation of Mo₂O₄(OH)₄(GlyH), 1.
- at pH = 0. Compound Na₂MoO₄·2H₂O (974 mg, 4.02 mmol) and glycine (153 mg, 2.03 mmol) were dissolved in 1 M HNO₃ (35 mL). 65% HNO₃ was added up to pH \approx 0. The resulting pale yellow mixture (c_{Mo} = 0.11 M) was stirred at room temperature for 19 hours. Thus 1 was isolated (589 mg, 75%).
- at pH = 1. Compound $(NH_4)_2MoO_4$ (100 mg, 0.51 mmol) was dissolved in water (10 mL) and glycine (21 mg, 0.28 mmol) was dissolved in 1 M HCl (3 mL). The two solutions were mixed together and 6 M HCl was added dropwise until pH = 1. The resulting colourless solution (c_{Mo} = 36 mM) was stirred at reflux temperature. After ca. 20 minutes 1 precipitated as a colourless solid (102 mg, 91%).
- B) Formation of Mo₂O₄(OH)₄(aaH) at different Mo/aaH molar ratios. The following reactions were carried out by a procedure analogous to that described for the Mo/aaH 2:1 synthesis (Experimental Section), unless otherwise specified. Amino acid nitrates, [aaH₂]NO₃, were obtained from the filtered solution after complete solvent removal in vacuo.
- aaH = GlyH, Mo/aaH = 1:2, pH = 1.8. From $Na_2MoO_4 \cdot 2H_2O$ (271 mg, 1.12 mmol), glycine (169 mg, 2.25 mmol), water (30 mL), 1 M HNO₃ (2.8 mL). $Mo_2O_4(OH)_4(GlyH)$. 1 (174 mg, 78%). $[GlyH_2]NO_3$ (218 mg).
- $\mathbf{aaH} = \mathbf{GlyH}, \mathbf{Mo/aaH} = \mathbf{1:13.7}, \mathbf{pH} = \mathbf{1.8.}$ From Na₂MoO₄·2H₂O (279 mg, 1.15 mmol), glycine (1.19 g, 15.8 mmol), water (92 mL), 1 M HNO₃ (11.2 mL). Mo₂O₄(OH)₄(GlyH). **1** (161 mg, 70%). [GlyH₂]NO₃ (161 mg).
- **aaH** = **PheH**, **Mo/aaH** = **1:2**, **pH** = **2.0**. From Na₂MoO₄·2H₂O (415 mg, 1.71 mmol), L-phenylalanine (566 mg, 3.42 mmol), water (20 mL) and 1 M HNO₃ (5.2 mL). Mo₂O₄(OH)₄(PheH), **2** (349 mg, 84%). [PheH₂]NO₃ (162 mg). **2** was also obtained by using (NH₄)₂MoO₄ (ca. 1.5 mmol) in the place of Na₂MoO₄·2H₂O, both at room temperature (97%, reaction time 2 hours) and at 70°C (99%, reaction time 1.5 hours).
- **aaH** = LeuH, Mo/aaH = 1:1, pH = 1.8. From Na₂MoO₄·2H₂O (358 mg, 1.48 mmol), L-leucine (195 mg, 1.48 mmol), water (20 mL) and 1 M HNO₃ (3.5 mL). The mixture was stirred at 50°C for 3.5 hours and then at room temperature for 3 days: no solid formed under these conditions. Then the mixture was concentrated to 14 mL in vacuo, thus allowing the precipitation of 3 (249 mg, 74%).
- $\mathbf{aaH} = \mathbf{LeuH}$, $\mathbf{Mo/aaH} = \mathbf{1:2}$, $\mathbf{pH} = \mathbf{1.8}$. From $Na_2MoO_4 \cdot 2H_2O$ (358 mg, 1.48 mmol), L-leucine (388 mg, 2.96 mmol), water (20 mL) and 1 M HNO₃ (5 mL). The mixture was heated at 50°C and complex 3 formed after 3.5 hours (312 mg, 93%). [LeuH₂]NO₃ (312 mg).
- $\mathbf{aaH} = \mathbf{MetH}$, $\mathbf{Mo/aaH} = \mathbf{1:2}$, $\mathbf{pH} = \mathbf{2.0}$. From (NH₄)₂MoO₄ (301 mg, 1.53 mmol), L-methionine (458 mg, 3.07 mmol), water (40 mL) and 3 M HNO₃ (few drops). Mo₂O₄(OH)₄(MetH), 4: yield 269 mg, 74%. Some unreacted excess methionine was isolated from the liquors.
- aaH = ProH, Mo/aaH = 1:2. From $(NH_4)_2MoO_4$ (307 mg, 1.57 mmol), L-proline (361 mg, 3.13 mmol), water (80 mL) and 3 M HNO₃ (few drops). $Mo_2O_4(OH)_4(MetH)$, 5 (233 mg, 68%).
- C) Influence of pH variations on the formation of 1 and 4. A suspension of 1 (434 mg, 1.09 mmol) in water (20 mL, pH \approx 3) was treated with 0.194 M NaOH (8.10 mL, 1.57 mmol) up to complete dissolution of the solid (pH = 4.83). Further NaOH (11.1 mL, 2.15 mmol) was added up to pH = 5.31. Afterwards 1.08 M HNO₃ (2.05 mL, 2.22 mmol) was added dropwise, thus compound 1 was recovered (yield 411 mg, 95% with respect to the initial amount). A similar behaviour was observed with compound 4.

Table S1. Formation of **1** in variable experimental conditions with pH monitoring.

Entry ^a	Mo/GlyH molar ratio	$c_{ m Mo}$ / $10^{ ext{-}2}$ M $^{ m b}$	Induction period ^c	pH change interval d	Lowest pH	Final pH	Yield
#1	1.0	5.0	15 min	57 min	2.05	2.17	84%
#2	1.6	1.0	22 min	96 min	2.08	2.48	88%
#3	2.0	6.7	39 min	93 min	2.08	2.36	87%

a 1.08 M HNO₃ was prepared from 67% HNO₃. Reactions #1-#3 were carried out by mixing appropriate amounts of GlyH (100-150 mg), $Na_2MoO_4 \cdot 2H_2O$ (600-800 mg) and water (*ca.* 30 mL), then 1.08 HNO₃ was added until pH = 2 (4-5 mL).

Graph S1. Profile of pH vs. time for the reaction reported as entry #2 in Table S1.

b Initial molar concentration of molybdenum in the reaction mixture.

c period of time during which the pH remained almost constant. For the definition of induction period, see A. D. McNaught and A. Wilkinson in *Compendium of Chemical Terminology - the "Gold Book"*. 2nd ed., IUPAC, Oxford, 1997.

d period of time during which the pH increased

Graph S2. Titration of an aqueous mixture of Na₂MoO₄ and GlyH (2:1 molar ratio) with 1.08 M HNO₃. Filled squares refer to pH values measured soon after each HNO₃ addition. Empty circles refer to final pH values measured after the formation of **1**.

pH values did not vary after addition, up to $H^+/GlyH = 2.70$ (in this case, pH = 3.93 did not vary after 15 hours). With $H^+/GlyH = 3.37$, pH quickly reached 2.55 and it began to increase after ca. 30 minutes with the formation of a colourless solid. The final value of pH = 3.93 was reached. When $H^+/GlyH$ was raised to 4.05, a small increase in pH was still detected, thus indicating residual formation of 1.

Calculation of v_{H+} : The amount of HNO₃ added and the pH of the solution after the second and final reaction are known (the "end of reaction" corresponds to the empty circle for H⁺/GlyH = 4.05 in Graph S2, when pH stopped increasing). Therefore, the moles of H⁺ reacted (Δn_{H+}) can be calculated by Equation S1. By knowing the amount of product isolated (m) and its molar mass (M), the molar ratio between Δn_{H+} and Mo₂O₄(OH)₄(GlyH) is given by Equation S2.

$$\Delta n_{\rm H^+} = V_{\rm HNO3} \times c_{\rm HNO3} - V \times 10^{\rm -pH}$$
 (Equation S1)

 $\Delta n_{\rm H+}$ = reacted moles of H⁺

 $V_{\rm HNO3}$, $c_{\rm HNO3}$ = volume and molar concentration of the HNO₃ solution

V = final volume of the solution, assuming that volumes are additive ($V = V_0 + V_{HNO3}$)

$$v_{\rm H+} = \Delta n_{\rm H+} \times M / m$$
 (Equation S2)

 $v_{\rm H+}$ = molar ratio between $\Delta n_{\rm H+}$ and Mo₂O₄(OH)₄(GlyH)

m = amount of solid Mo₂O₄(OH)₄(GlyH) isolated

 $M = \text{molar mass of Mo}_2\text{O}_4(\text{OH})_4(\text{GlyH})$

The value obtained for the v_{H^+} coefficient is 4.43, which is very close to the stoichiometric coefficient of H⁺ required for the formation reaction proposed (see Equation 1). The value of Δn_{H^+} obtained with equation S2 is inevitably overestimated since it does not consider any possible equilibrium, established after the formation of 1, which may involve H⁺, reducing its concentration. Examples are the protonation of unreacted glycine or molybdate. Nevertheless, since the formation of 1 was almost quantitative (88% yield) and the reaction was carried out under stoichiometric conditions, the value of Δn_{H^+} may be not too biased.

Table S2. Compared ¹³C CP-MAS chemical shifts (ppm) of aaH, [aaH₂]NO₃ and Mo₂O₄(OH)₄(aaH).^a

α-Amino Acid	Compound	СО	C_{α}	C_{eta}	C_{γ}	C_δ or Ph	Ref.	
$H_{3}N$ α C	GlyH	176.2	43.5				b	
	$[GlyH_2]NO_3$	171.7	41.1				This work	
	$Mo_2O_4(OH)_4(GlyH), 1$	172.0	41.3				This work	
β CH ₂ Ph	PheH	175.3	58.3, 56.4	40.4, 37.6		135.4, 130.1, 128.4		
CH O	$[PheH_2]NO_3$	173.9, 173.2	56.3, 55.5	37.0, 36.3		135.2, 132.8, 132.3, 129.8,	This work	
H ₃ N C						129.3, 127.6, 127.3	THIS WOLK	
О	$Mo_2O_4(OH)_4(PheH)$, 2	172.6	57.3	35.6		134.5, 133.6, 132.5, 129.6		
$H_3\overset{\delta}{\overset{\gamma}{\overset{\gamma}{\overset{\gamma}{\overset{\gamma}{\overset{\gamma}{\overset{\gamma}{\overset{\gamma}{$	LeuH	176.7, 175.8	53.8, 52.7	42.4, 40.6	24.6	24.6		
β CH ₂	[LeuH ₂]NO ₃	173.9, 173.1	52.9	39.2	24.7	23.3, 22.3, 21.7, 20.0	This work	
H_{3N} G	Mo ₂ O ₄ (OH) ₄ (LeuH), 3	173.2	53.2	39.2	25.1	21.3, 20.1		
$H_2\overset{\gamma}{\subset}$ SCH ₃	MetH	176.7	55.2, 52.1	32.9, 32.0	31.0	17.3, 15.3		
$\int_{CH_2}^{\beta CH_2} \Theta$	$[MetH_2]NO_3$	173.7, 172.2	54.6, 54.4	32.9	30.2	16.0, 15.5	This work	
H_{3N} C C C C C	$Mo_2O_4(OH)_4(MetH)$, 4	174.4, 171.8	54.7	31.5, 30.4	28.7	15.3, 14.3, 12.4		
H ₂ C	ProH	176.7	60.6	29.6	25.1	47.8		
$ \begin{array}{cccc} & & & & & & & & \\ & & & & & & & \\ & & & & $	Mo ₂ O ₄ (OH) ₄ (ProH), 5	176.8, 175.2, 173.5	65.0, 61.0	30.2, 29.4	26.2, 25.8, 23.7	49.7, 47.3, 46.9	This work	
$(H_3C)_2HN \xrightarrow{\alpha} C$	dmPheH	172.6	66.5	35.4	39.0 (NCH ₃)	139.0, 130.6, 129.1, 127.7, 125.1		
	Mo ₂ O ₄ (OH) ₄ (dmPheH), 6	171.6	69.9	30.4	42.0, 36.6 (NCH ₃)	140.9, 130.8, 128.8, 127.8	This work	

a Splitted signals for PheH, [PheH₂]NO₃, LeuH, [LeuH₂]NO₃, MetH, [MetH₂]NO₃ are due to the presence of two crystallographically independent molecules in the asymmetric unit. b C. Gervais, R. Dupree, K. J. Pike, C. Bonhomme, M. Profeta, C. J. Pickard and F. Mauri, *J. Phys. Chem. A*, 2005, **109**, 6960-6969

Table S3. Main solid state IR absorptions (cm⁻¹) and vibrational assignments for compounds **1-6** and the related α -amino acids.

α-Amino Acid	Compound	npound Carboxylate group			Ammonium group			Mo-O backbone				Ref.
		$v_{asym}(\mathrm{CO_2}^-)$	$v_{sym}(\mathrm{CO_2}^-)$	$\Delta v_{a-s} \ (\Delta v^{\mathrm{rel}}_{a-s})$	$\delta_{asym}({ m NH_3}^+)$	$\delta_{sym}(\mathrm{NH_3}^+)$	$v_{sym}(MoO_2)$	$v_{asym}(\text{MoO}_2)$	$v_{asym}({ m Mo_2O})$	$v(Mo-O_{ligand})$ or/and $v(Mo_2O_2)$	$v_{sym}(Mo_2O)$	
H ₂	GlyH	1610	1407	203	1580	1500						a
H ₃ N C C O	Mo ₂ O ₄ (OH) ₄ (GlyH), 1	1623	1412	211 (+8)	1590	1512	946	918, 903	761	531	473	This work
CH ₂ Ph	PheH	1556	1408	148	1622	1494						b
H ₃ N H C O	Mo ₂ O ₄ (OH) ₄ (PheH), 2	1607	1426	181 (+33)	1607	1525	942	913, 904	756	534		This work
CHMe ₂ CH ₂ ▼	LeuH	1578	1406	172	1608	1512						c
H _{3N} H C O	Mo ₂ O ₄ (OH) ₄ (LeuH), 3	1599	1428	171 (-1)	1620	1513	939	909, 896	768	537	479	This work
H ₂ C−SCH ₃ H ₂ C ▼	MetH	1582, 1560	1406	165 (av.)	1608	1508						d
H ₃ N H C O	Mo ₂ O ₄ (OH) ₄ (MetH), 4	1575	1427	148 (-17)	1603	1504	942	913, 894	762	540	486	This work
	РгоН	1613	1404	209	δ (NH ₂ ⁺	δ(NH ₂ ⁺): 1553						e
C CH ₂	Mo ₂ O ₄ (OH) ₄ (ProH), 5	1603	1432	171 (-38)	$\delta ({ m NH_2}^+$): 1558	944	914, 901	767	543	463	This work
CH ₂ Ph ▼ C C	dmPheH	1610	1416	194	v(N–CH	(3): 1485						This work
(H ₃ C) ₂ HN ⁷ H C ⊕ ∥⊖ O	$Mo_2O_4(OH)_4(dmPheH), 6$	1626	1412	214 (+20)	v(N–CH	(3): 1495	946	916, 901	769	547	484	THIS WOLK

IR spectra of α-amino acids were recorded by FT-IR; the following references assisted with band assignments: (a) M. Tsuboi, T. Onishi, T. S. Nakagawa and S. I. Mizushima, *Spectrochim. Acta* 1958, **12**, 253-261; (b) S. Olsztynska, M. Komorowska, L. Vrielynck and N. Dupuy, *Appl. Spectrosc.*, 2001, **55**, 901-907; (c) J. F. Jackovitz and J. L. Walter, *Spectrochim. Acta*, 1966, **22**, 1393-1406; (d) A. Grunenberg and D. Bougeard, *J. Mol. Struct.*, 1987, **160**, 27-36; (e) C. C. Wagner, M. H. Torre and E. J. Baran, *Lat. Am. J. Pharm.*, 2008, **27**, 197-202.

Figure S1. Solid state IR spectrum of Mo₂O₄(OH)₄(GlyH), 1.

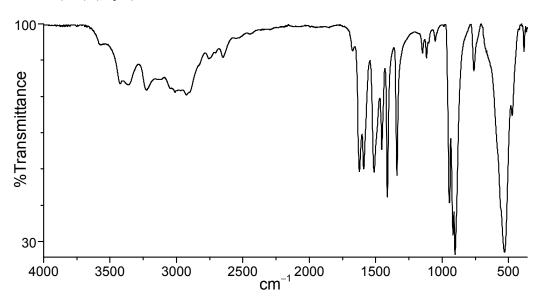


Figure S2. Solid state IR spectrum of Mo₂O₄(OH)₄(PheH), 2.

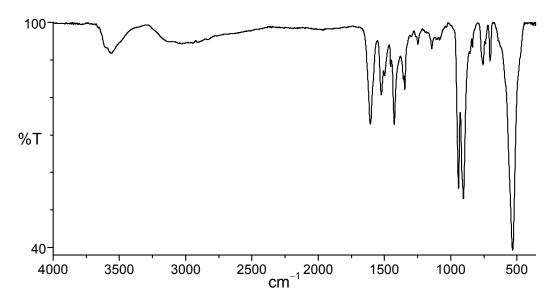


Figure S3. Solid state IR spectrum of Mo₂O₄(OH)₄(LeuH), 3.

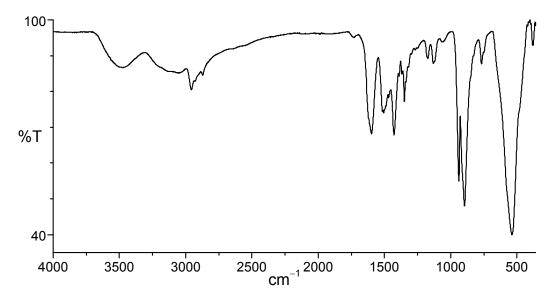


Figure S4. Solid state IR spectrum of Mo₂O₄(OH)₄(MetH), 4.

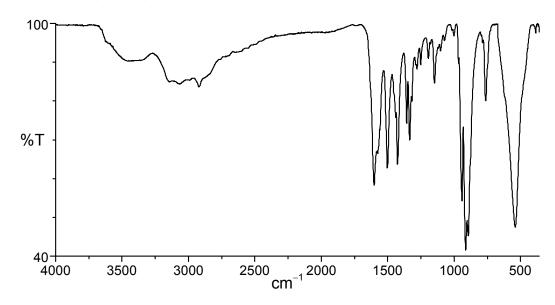


Figure S5. Solid state IR spectrum of Mo₂O₄(OH)₄(ProH), 5.

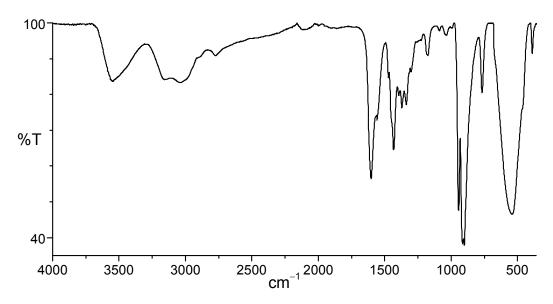
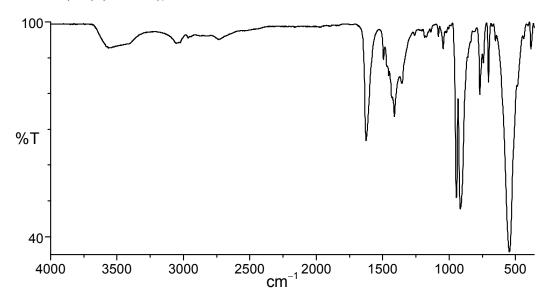
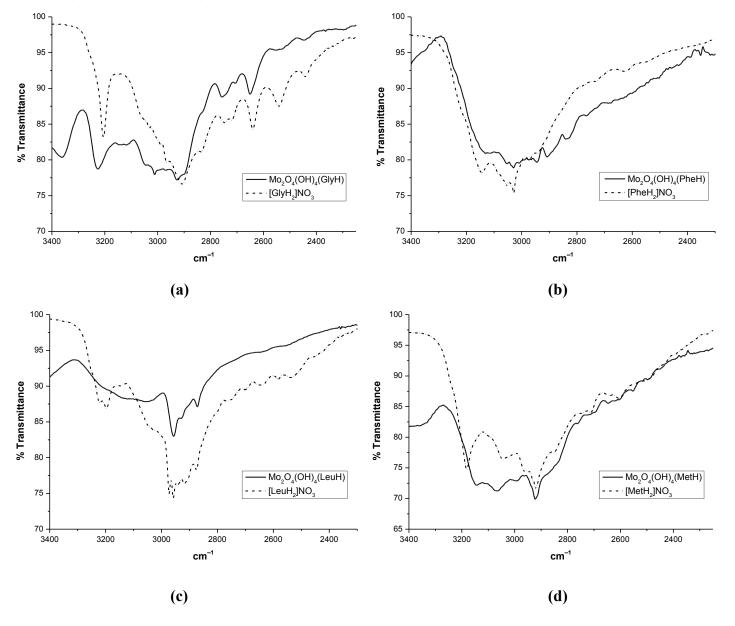




Figure S6. Solid state IR spectrum of Mo₂O₄(OH)₄(dmPheH), 6.

Figure. S7. Comparison of $Mo_2O_4(OH)_4(aaH)$ (straight line) and $[aaH_2]NO_3$ (dashed line) IR spectra in the 2300-3400 cm⁻¹ interval for glycine (a), L-phenylalanine (b), L-leucine (c) and L-methionine (d).

